System-level Modeling and Validation Solutions for Heterogeneous MP-SoCs

Gabriela Nicolescu
Ecole Polytechnique de Montréal
Tel: (514) 340 4711 #5434
Fax: (514) 340 3240
Email: gabriela.nicolescu@polymtl.ca
Heterogeneous SoC (1/2)

- Different processors (RISC, configurable processors, …)
- Different hardware components (IPs, Memory, …)
- Different interconnects and communication protocols
Heterogeneous SoC (2/2)

- SoCs are drivers for several technologies integration
 - ITRS 2003 previsions
 - Electro-biological components (2006)
 - ...
- More efficient SoC in the near future
- New CAD tools will be needed

MPSoc 2004 G. Nicolescu
Outline

- **Current requirements for MPSoC**
- Multi-technology benefits for MPSoCs – example for optical interconnect on chip
- System-level modeling & validation for multi-technology SoCs – challenges and possible solutions
- Conclusion
Current MPSoC platforms objectives

- Flexibility & Efficiency
 - Using increasingly Sw for function implementation
 - Parallel processing for low power and scalability

- Fast time-to-market for platform user(s)
 - Need clean programming models
 - Design platform to support programming models
 - Simple, predictable, scaleable SoC interconnect
Example: ST MPEG4 Codec trials

- 30 frame/sec, VGA resolution

- 95% Lines of Code in S/W
- 96% Lines of Code in S/W

Lower cost Exploration More Flexibility

0 RISC

S/W: 5 RISC, 4 threads CLIP and DIV instrns.

H/W (80% perf.): DCT, SAD, BDIFF, BADD, BQ, BIQ

21 RISC

S/W: 15 RISC, 16 threads CLIP and DIV instrns.

H/W (65% perf.): DCT, SAD
Example: ST MPEG4 Codec trials

- 30 frame/sec, VGA resolution
- Design space exploration
 - 5 processor architecture
 - 95% lines of code in S/W
 - 80% performance in H/W
 - Bandwidth: S/W = 1.2 GB/s H/W = 2 GB/s
 - 15 processor architecture
 - 96% lines of code in S/W
 - 65% performance in H/W
 - Bandwidth: S/W = 3.6 GB/s H/W = 1 GB/s
Current Requirements vs. Interconnect Solutions

- Requirements for MPEG4 codec example
 - 5 proc. arch.: S/W = 1.2 GB/s H/W = 2 GB/s
 - 15 proc. arch.: S/W = 3.6 GB/s H/W = 1 GB/s
- 100 processors S/W > 20 GB/s
- Traditional bus
 - 0.8 GB/s at 200 MHz (burst, 100% use)
- Experimental NoCs
 - 3-6 GB/s at 200 MHz (near 100% use)
- Common to all NoC’s: Long latency

- Bandwidth and latency represent a real challenge
Interconnect Challenges at 90nm and beyond

- Interconnect delay > gate delay
- Interconnect area >> gate area
- RTL + physical synthesis needed
- Increasing transmission delay
 - at 65 nm: over 5 clock cycles to transmit signal from chip end-to-end
- Deep sub-micron effects
 - crosstalk, voltage isolation, wave reflection, …
Outline

- Current requirements for MPSoCs design
- Multi-technology for MPSoCs – example for optical interconnect on chip
- System-level modeling & validation for multi-technology SoCs – challenges and possible solutions
- Conclusion
Multi-technology (MT) and MPSoC

MT may be exploited to overcome the presented challenges for MPSoC

- Example - optical interconnects in MPSoC
 - High bandwidth and density
 - Reduction of power dissipation
 - Relieve of a broad range of design problems experienced in current electronic systems (crosstalk, voltage isolation, wave reflection, …)
 - Routing congestion problems alleviated
Optical interconnect on chip
– reality check –

- First results for optics joined with silicon
- Industrial applications
- Possible technological solutions
- Possible MPSoC architecture including optical interconnects
First results for optics combined with silicon

- Stanford university
 - Study showing that several effects (crosstalk, voltage isolation, wave reflection, ...) may be relieved by optics

- DARPA, IBM R&D and Agilent technologies
 - New program for development of optical-interconnect chips

- McGill University
 - Study of optical interconnect for very short distances

- IMEC
 - Approach for adding a high density photonic interconnect layer on top of silicon IC’s
Possible technological solution

- Optical devices (passives and actives) above the classical integrated circuits
- Compatible with CMOS technology

Source: I. O’Connor, LEOM, ETS Lyon
Industrial application

- Technology and Manufacturing Group, Intel Corporation
 - Optical Interconnects on chip provide better bandwidth/latency ratio comparing to classical interconnects
Possible architecture

Source: I. O'Connor, ETS Lyon
Possible architecture

- Multiple signals of dif. wavelengths in the same waveguide
 - no contention, bandwidth density \rightarrow 20 GB/s
 - simple, scaleable interconnect \rightarrow simpler prog. models
- 4x4 optical cross-bar - 0.00425 mm2 for passive network

Source: I. O'Connor, ETS Lyon
Outlook for the design of MT-SoC

- Access to physical prototyping for multi-technology SoCs is a major challenge
 - Significant cost
 - Harder to influence standard processes

- Modeling and simulation becomes a necessary alternative in design space exploration for these systems
 - Definition of new CAD tools is mandatory
 - Definition of new specification and execution models
 - The major challenge – accommodating the different application domains (optical, electrical, mechanical)
Outline

- Current requirements for MPSoC
- Multi-technology benefits for MPSoCs – example for optical interconnect on chip
- System-level modeling & validation for multi-technology SoCs – challenges and possible solutions
- Conclusion
Challenges for MT-SoC Specification & Validation (1/3)

- Heterogeneous components specific to different application domains
 - Diversity of specification & execution solutions
 - Specification languages
 - Abstraction levels
 - Synchronization & comm.

- No ideal solution for global specification

- No ideal solution for global execution
Objective for specification

- Define a new model for global representation of heterogeneous systems
 - Abstract interfaces hiding adaptations required for assembling different components
 - Clear separation between behavior and communication
 - Clear separation between modeling and execution
Representation Model for Heterogeneous Systems Specification

Virtual Architecture

- Wrapper
- Module
- Virtual module
- Virtual interface

Optic

- External interface
 - System-Level
 - SystemC

Electro-mechanical

- Internal interface
 - RT Level
 - Matlab

Control

- "chatoyant/wf4.txt"
- Parameters:
 - -1e-005
 - -8e-006
 - -6e-006
 - -4e-006
 - -2e-006
 - 0
 - 2e-006
 - 4e-006
 - 6e-006
 - 8e-006
 - 1e-005

Electro-mechanical

- "chatoyant/wf4.txt"
- Parameters:
 - -1e-005
 - -8e-006
 - -6e-006
 - -4e-006
 - -2e-006
 - 0
 - 2e-006
 - 4e-006
 - 6e-006
 - 8e-006
 - 1e-005

System Level

- SystemC

RT Level

- Matlab
Classical Execution Model

- Component execution models
- Interconnection execution models
- Ad-hoc simulation interfaces
- No automatic composition of heterogeneous components

- Building execution models
 - Source of errors
 - Increase the design time
New Approach: Execution Model Abstraction

- Abstract interfaces
- Abstract models for interconnections between heterogeneous components
- Automatic composition of component execution models
First Results: Flow for Automatic Generation of Simulation Models

Virtual Architecture

Module 1 (Language 1 Level 1)

Module 2 (Language 2 Level 2)

Abstract Interconnect

Simulation Model Generation

Simulation Model

Module 1 (Simulator 1 Level 1)

Module 2 (Simulator 2 Level 2)

Simulation Interface

Simulation interface

Simulation Bus

Simulation Library
First Results: Flow for Automatic Generation of Simulation Models

- Simulation interface: execution model of abstract interfaces providing adaptations between
 - Different abstraction levels
 - Different communication protocols
 - Different specification languages

- Simulation bus: interpretation of interconnect at different abstraction levels
 - Abstract
 - Physical

- SystemC-based solution
Specification and validation of an optical switch

Two possible configurations:
- Mirrors 1 and 4 - reflect light
- Mirrors 2 and 3 - reflect light

MPSoc 2004
G. Nicolescu
First Result Summary

- Cosimulation environment working
 - Eased cooperation of different teams, different cultures
 - Provided specification model
 - Writing library elements for simulation interfaces generation
 - Integrate Matlab in the cosimulation environment
 - Integrating models of optical devices in SystemC
- Debugging system models
 - Improved functionality when several mirror models joined together into an array
- Debugging overall communication
 - Early and fast global system validation
Outline

- Current requirements for MPSoC
- Multi-technology benefits for MPSoCs – example for optical interconnect on chip
- System-level modeling & validation for multi-technology SoCs – challenges and possible solutions
- Conclusion
Conclusion

- **SoC evolution**
 - MPSoC architectures with large scale parallelism
 - Multi-technology integration (optical, MEMS, RF, etc.)

- **These two trends may be complementary**
 - Future heterogeneous MPSoC
 - Optical interconnect integration to overcome interconnect challenges

- **Key contribution for heterogeneous MPSoC design**
 - New EDA tools accommodating different application domains
 - Global specification models
 - Automatic generation for global simulation models

- **Outlook: Global specification and validation for SoC including optical networks**
 - More analysis of existing execution models
 - Deeper study of particular simulation interfaces (opto-electric & electro-mechanical)
 - Advanced definition, formalism for simulation interface