Optical NoC Evaluation in a System-Level MP-SoC Platform

Gabriela Nicolescu
Ecole Polytechnique de Montréal
Tel : (514) 340 4711 ext. 5434
Fax: (514) 340 3240
Email : gabriela.nicolescu@polymtl.ca
Heterogeneous SoC

- MPSoC architectures with large scale parallelism
- Optical NoC integration to overcome interconnect challenges
Optical NoC: Current R&D

- Research is technology-dominated
 - Physical level research
 - New devices and architectures are defined
- System-level vision not considered yet
- Cooperation between system-level and physical-level designers is required
Overview

➢ Optical NoC – General view
➢ Optical NoC evaluation in System-Level platform
➢ Results
 • MPEG-4 application
 • Optical NoC vs. STBus: 2X speedup
 • Optical NoC vs. XBar: 3.5X speedup
 • Cavity detection application
 • Reducing programming effort
Technological solution

- Optical devices (passives and actives) above the classical integrated circuits
- Compatible with CMOS technology

Source: I. O’Connor, Ecole Centrale Lyon
Optical NoC Architecture

Electrical Part

Optical/Electrical Interface

Optical Part

λ-router

MUX

DEMUX

λ₁

λ₂

λ₃

λ₄

State « bar »

State « cross »

1

2

3

4

MPSoC 2006

G. Nicolescu
Optical NoC Architecture

- Multiple signals of different wavelengths in the same waveguide
 - No contention, high bandwidth density \rightarrow 20 GB/s
 - Simple, scaleable interconnect \rightarrow simpler prog. models
- Constant latency (<1 ns), function of:
 - Optical index of materials (Si, SiO$_2$)
 - Light propagation delay
 - Waveguide length
- Frequency limited by optical/electrical interfaces
 - Currently 100 MHz
ONoC Evaluation in a System-Level Platform

Applications
- MPEG4
 - Intensive inter-processor communication (40%)
- Cavity detection application
 - Memory consuming application

XBar @ 200 MHz
STBus @ 200 MHz
ONoC @ 100 MHz

StepNP Platform
MultiFlex Mapping
ONoC Evaluation in a System-Level Platform

Applications
- MPEG4
 - Intensive inter-processor communication (40%)
- Cavity detection application
 - Memory consuming application

XBar @ 200 MHz
STBus @ 200 MHz
ONoC @ 100 MHz

System-level model for ONoC and optical/electrical interfaces

MPSoc 2006
G. Nicolescu
Results for MPEG4 Application

- ONoC vs. STBus: 2X speedup
- ONoC vs. XBar (5 cycle latency): 3.5X speedup

Results based on high-level STBus model.
More recent implementations of STBus may exhibit higher performances.
Summary

- System-Level Evaluation of MPSoC Integrating Optical NoC
 - First results for global simulation of MPSoC including optical network
- Cooperation between Physical Designers and System-Level Designers
 - Physical Design Team
 - Ecole Centrale de Lyon (Prof. Ian O`Connor)
 - System-Level Design Team
 - ST Microelectronics (MultiFlex Team) – MPSoC including STBus and XBar Networks
 - Ecole Polytechnique de Montreal – global modeling and simulation for Opto-Electrical MPSoC