Energy-Efficient LTE Baseband with Extensible Dataplane Processor Units

Chris Rowen
Founder and CTO
Tensilica Inc
Tensilica Focus: Dataplane Processing Units (DPUs)

DPUs: Customizable CPU+DSP delivering >10x higher performance than CPU or DSP with better flexibility than RTL.
Next-Generation Baseband Standards Drive Fundamental Change in Market

Emerging standards (LTE, WiMAX) require processing power exceeding the capabilities of today’s DSPs.

Drive towards multi-standard receivers requires programmable solutions.

Push towards low-cost green infrastructure requires high performance at very low power.
Dataplane Processors for Almost Every Wireless Systems Role
New Wireless Standards Drive Performance and Efficiency

Evolving from 2G to 4G:
• 100-1000x increase in op rate
• Baseband power budget reduced by 2-3x

Preferred implementation:
• 2G (GSM) → DSP
• 3G (UMTS) → DSP + function-specific coprocessors
• 3.9B/4G (LTE/LTE-A) → DPU

Performance increase to 3.9G/4G
• 3G → 3.9G (LTE @140Mbps)
 7x demodulation Mops/mW
 130x decoding Mops/mW
• 3G → 4G (LTE-Adv @ 1Gbps)
 85x demodulation Mops/mW
 870x decoding Mops/mW

DPU for baseband:
• Tight integration of DSP and special-purpose function units to increase efficiency and programmability

Source: From Multi-Core for Mobile Phones: C.H van Berkel, ST-NXP Wireless DATE09
Why DPUs?
Faster, More Flexible than DSPs and Coprocessors

- Existing DSPs and Coprocessors Inadequate:
 1. Wireless computing requirement growing much more rapidly than GP DSP performance or Moore’s Law silicon scaling
 2. DSP + special-function coprocessor (RTL) too rigid
 - Multiple complex standards demand programmable acceleration
 - Excessive bus, cycle, power overhead in DSP to coprocessor communication

- So Tensilica Invents DPU Technology
 ➔ Leading edge DSP foundations: ConnX family:
 Introducing flagship Baseband Engine: up to 8 engines at 80ops/cycles per engine: 640 ops/cycle
 ➔ Direct integration of special-function coprocessors directly into DPU for programming and full debug
 Processor instruction set extension
 Direct RTL interface extension
Three Key Ingredients

1. New Baseband DSP Options: ConnX Family
 • Flagship: ConnX Baseband Engine: 16-MAC throughput for OFDM-based wireless

2. Direct integration of RTL accelerators with control engines

3. Improved processor foundation for higher processor efficiency
The ConnX Baseband Engine

- High performance DSP for wireless communication
 - Wireless: LTE, LTE-Advanced, WiMax, WiFi
 - Broadcast: DVB-t, ATSC, ISDB-T
 - Mobile TV: ATSC-M/H, CMMB, DMB, MediaFLO, DVB-H, 1/3-seg
 - Radio: (RDS)FM, HD Radio, Satellite radio
- Industry leading computational throughput:
 - 8 way Real/4-way Complex SIMD per cycle + 3 way VLIW
 - 16 18-bit MACs/cycle
 - Radix-4 FFT butterfly per cycle
 - 4 complex FIR taps per cycle
- Configuration option for Tensilica’s Xtensa LX customizable processor: memories, accelerator interface, and extra instructions can be added as required
- Scalable cluster architecture from 1-8 processors
ConnX Baseband Engine Instruction Set

- **Rich baseline instruction set:** up to 153 operations
- **DSP instruction set:** 285 operations in 3 VLIW slots

Load/Stores ops:
- **Addressing Modes:**
 - offset
 - offset-update
 - Index
 - index-update
 - circular
 - bit-reversed
- Load 16b/32b scalars and vectors
- Store 16b/32b scalar, vectors, transposed
- Load/store unaligned and masked delivers full bandwidth loads and stores with unaligned data

Multiply ops:
- **Complex and scalar 18bx18b multiplies**
- Multiply, multiply-round, multiply-add, multiply-subtract
- Multiply complex conjugate
- Magnitude-squared of complex
- Full precision and saturated/rounded outputs
- Up to 16 multiplies per operations
- FIR-optimized multiply-add

ALU ops:
- **20b/40b extended precision in 160b vectors**
- Full arithmetic, logical and shift with saturation operations
- SIMD boolean setting for compares
- Ops: ABS, ADD, AND, ASUB, CLAMPS EQ, XOR, LE, MAX, MAXB, MAXU, MIN, MINB, NAND, NEG, NSA, NSAU, OR, PACK, SLL, SLLI, SLLV, SRA, SRAI, RADD, SUB

Other ops:
- Direct support for single-cycle radix-2 and radix-4 butterfly operations
- 8-way SIMD integer and fractional divide
- 4-way SIMD reciprocal square root
- Arbitrary permutation and selection from vector pairs
- Zero-overhead looping
- Conditional vector moves
2-8 ConnX Baseband Engines Form Advanced Processor Cluster

- 2-8 Baseband Engines form powerful shared memory baseband processor platform
- 8 engine cluster:
 - 128 MACs/cycle
 - Up to 640 ops/cycle
 - 880K 2048pt complex FFTs per second
- Distributed DataRAM space visible to all engines accessed across 128b pipelined interconnect
- Write-buffered interface allows aggregate 120GB/s processor load/store data bandwidth and 60GB/s inter-engine data bandwidth (at 500MHz)
- Native SystemC modeling of multi-engine processors, including cycle-accurate and fast “Turbo” mode bit-accurate simulation

Typical 4-engine configuration
Optimized processing in LTE signal path

LTE Receive data stream:
- 1x2 MIMO
- 30.73M samples/sec
- Each sample is [I,Q] pair

- Typical Xtensa processors implement 1 to 3 VLIW (FLIX) slots per instruction
- Typical Xtensa processors implement 1 to 4-way SIMD for complex operands

How many useful operations can you perform on the data stream (per Xtensa)?

20-50 ops per sample at modest MHz
Enhanced RTL Integration

- RTL Accelerator blocks have a wide variety of interface types and widths
 - Data input stream
 - Data output stream
 - Data command inputs
 - Data output flags
 - Configuration registers
 - Mode control
 - Status outputs

- Extensible processor matches RTL interface type and width (to 1024b)
 - Output queues
 - Input queues
 - Read only lookups
 - Read/write lookups
 - Import wires
 - Export states

- Full software support for interfaces:
 - Mapped to instructions and compiler
 - Modeling in high-level and RTL tools
 - Visible to source debugger

- Processor performs “smart DMA” for RTL data transfers

- Multiple RTL blocks controlled by one processor
Direct Control of Multiple RTL Blocks

Example

5-slot VLIW Instruction streams data from memory, through 3 RTL data-paths and back to memory:

- 1 128b read from memory
- 1 128b operation through RTL A
- 1 128b operation through RTL B
- 1 128b operation through RTL C
- 1 128b write to memory

Interface Declaration:

```
regfile DR 128 16 d
lookup LUA {`128+32+8`, Mstage} {`128`, Mstage+3}
state ModeA 32 add_read_write
lookup LUB {`128+32+8`, Mstage} {`128`, Mstage +3})
state ModeB 32 add_read_write
lookup LUC {`128+32+8`, Mstage} {`128`, Mstage +3})
state ModeC 32 add_read_write
format f64 64 {l_slot,s_slot,a_slot,b_slot,c_slot}
table cmdA 8 8 {0, 1, 2, 3, 4, 5, 6, 7}
table cmdB 8 8 {0, 1, 2, 3, 4, 5, 6, 7}
table cmdC 8 8 {0, 1, 2, 3, 4, 5, 6, 7}
slot_opcodes l_slot {LDIU}
slot_opcodes s_slot {SDIU}
slot_opcodes a_slot {LUOpA}
slot_opcodes b_slot {LUOpB}
slot_opcodes c_slot {LUOpC}
operation LUOpA {out DR do, in DR di, in cmdA cmd}
  in ModeA, out LUA_Out, in LUA_In) {
    assign LUA_Out = {cmd,ModeA,di};
    assign do = LUA_In;}
operation LUOpB {out DR do, in DR di, in cmdB cmd}
  in ModeB, out LUB_Out, in LUB_In} {
    assign LUB_Out = {cmd,ModeB,di};
    assign do = LUB_In;}
operation LUOpC {out DR do, in DR di, in cmdC cmd}
  in ModeC, out LUC_Out, in LUC_In) {
    assign LUC_Out = {cmd,ModeC,di};
    assign do = LUC_In;}
```
Full Accelerator Integration

- For new functions, integrated acceleration is easy and efficient
- Your proprietary accelerators are fully integrated into instruction set and software tools for each processor
- Add any number of new data pipelines, registers, memories, inter-processor channels – up to 100s of ops per cycle
- Tensilica Instruction Extension (TIE) format typically 10x more concise than Verilog
- The cycle-by-cycle behavior of each accelerator written in standard C and modeled in fast cycle-accurate simulator
- Use multiple small processor for additional throughput on complex sets of tasks

No other processor family offers this combination

1. **Performance**: special operations, VLIW, SIMD
2. **Efficiency**: low overhead in gates and power
3. **Automation**: Learn simple TIE format in hours
4. **Programmability**: all accelerators controlled in C
Specialized Processor as Efficient as RTL
Tensilica Turbo Engine

- LTE requires high-data-rate Turbo decoding: >5000 ops per bit
- Turbo decoding closely tied to HARQ error processing: favors programmability
- Xtensa’s instruction extensions, wide data-paths and multiple wide memories enable efficient programmable Turbo Engine

Method:
- 2 blocks in parallel
- 8 parallel windows per block
- each window updates 8 states per cycle
- 1 cycle for each forward and backward pass (4 cycles per iteration) per bit

Implementation:
- Dual 576b wide state memories
- Single 128b interleave memory
- Dual 128b load/store interface for main memory
- 320K gates
- 6 stage computation pipeline
- 4 cycles per bit per iteration/16 bits in parallel = 0.25 cycles per bit per iteration.
MIMO Decoder for 3GPP LTE

- **Worst-case system**
 - 4x4 Spatial Multiplexing
 - 20MHz Channel with 64QAM Modulation

- **Algorithm**
 - SIC (Successive Interference Cancellation)
 - LMMSE-SQRD (Sorted QR)
 - Sorted QR implemented with Givens Rotations
 - LLR Module

- **Implementation Platform**
 - Instruction extensions for ConnX Baseband Engine: (120K gates)

- For 10MHz uplink channel, channel estimation also fits in 350MHz budget
Advances in Processor Foundations

- Smaller: <15K gates for 32b RISC baseline (5-stage pipe)
- Faster: 10-15% performance gain across all configurations – to 1GHz (45GS)
- Lower power: Pipeline-specific clock-gating + power-optimized VLSI flow = ~3x active power reduction over non-clock-gated design
- More efficient register files: optimal port sharing across VLIW slots
- Huge step in memory system capability: Up to 32 ports into private memories to 1024b wide (25Tbps @ 750MHz)
- Tool advances:
 - Compiler operator overloading for user-defined types
 - Direct instantiation of fast processor model into standard Verilog simulation
 - Multi-processor application/configuration energy analysis
 - Expanded multi-processor library
Tensilica LTE PHY Development Architecture

ConnX Baseband DSPs + Accelerators for Minimum Power/Area

Tx Signal Engine (BBE)
- Frequency Rotator
- FFT
- RB Mapper
- DFT
- Pulse Shaper
- Interpolation FIR

Rx Signal Engine (BBE)
- Frequency Rotator
- Synchronization (P-SCH, S-SCH)
- FFT
- Channel Estimator

Tx Data Control (Controller)
- Bit Int
- Z-C Gen
- Grey Enc

Rx Data Control
- Z-C Gen
- Viterbi Acc

HARQ Control
- Deinterleaver
- Rate Dematcher
- HARQ Processing

Turbo Controller
- HARQ Buf
- Deint Buf

Channel Engine (BBE)
- Soft Demod
- Grey Dec
- QR Acc
- ML Acc

Signal Engine (BBE)
- Decoder LMMSE
- Decoder ML
- Soft Demapper
- Descrambler

Ref Signal Gen
- PUCCH Signal Gen
- Scrambler
- Bit Interleaver
- HARQ Support & Rate Matcher
- FEC Encode
- CRC

Frequency Rotator
- FFT
- RB Mapper
- DFT
- Pulse Shaper
- Interpolation FIR

Cosine Acc
- QR Acc
- Z-C Gen

PolyFilt Acc
- Deint Buf
- Deinterleaver
- Rate Dematcher
- HARQ Processing

Ref Signal Gen
- PUCCH Signal Gen
- Scrambler
- Bit Interleaver
- HARQ Support & Rate Matcher
- FEC Encode
- CRC

Copyright © 2009, Tensilica, Inc.