The Architecture of Multiprocessor Systems on a Chip

Trevor Mudge

Electrical Engineering & Computer Science
The University of Michigan
Ann Arbor

Outline

- Summary of current "mainstream" computer architecture research
- Current focus of CA research
- Relevant to SOC community
- How can the two communities exchange ideas?

Summary of current "mainstream" computer architecture research

Computer Architecture Research

- A personal view can't speak for the rest
- Milieu: ISCA, MICRO, HPCA, ASPLOS, PACT, ICS, PLDI ...
- Themes:
 - Performance
 - Performance
 - Performance

Themes

Performance

- presumption of unlimited transistor budgets
 benchmarks SPEC2000
- cycle-accurate simulators

CPU centric

- processor memory rather than memory-disk
- sequential model of processing

Generality

- general purpose processing
- "integer" codes

Heterogeneity

- identical processorsSMP, CMP, etc

Audience

- Intel, IBM, Sun, Motorola, AMD, Compaq
- Desktops and servers
 - Wintel
 - Linux servers
- Increasingly smaller part of computing and communications
 - embedded ahead by dollar volume
 - unit sales ahead long ago

Hypothesis

- Innovation (in computers) follows low power and volume
 - Mainframes
 - Minicomputers
 - Microprocessors
 - Hand help communicators
 - 3G phone the next desktop
 - merged functionality wireless mobile computing
- Each step characterized by:
 - Reinventing earlier era
 - Adding its own inventions

Corollary

- Focus of innovation in computer architecture and systems will move away from the Wintel desktop to embedded computing
- Easy bet because everything else is embedded ©

Idiosyncrasies

- Computations without I/O
- Interrupt structures missing
 - Context switching as a result of multitasking/threading
- Real-time not a priority
- Functionality limited
 - + * /
 - special purpose usually not examined
 - Graphics
 - NIC, etc
- Time-to-market not a problem Itanium
- DSPs rarely discussed
- x86 (IA32) rarely discussed MIPS

Current Focus of CA Research

Research Areas

- Memory hierarchy performance
 - Caches
 - New memory interfaces
 - Raid a special case
- Branch prediction
 - Value prediction
- Instruction level parallelism
 - Pipelining
 - Multi-issue
 - Superscalar
 - VLIW

Research Areas (cont.)

- Compiler-Architecture trade-offs
 - In hardware or software?
- Technology limits wirelength
 - Often misunderstood
 - Si technology is moving faster than ever
- Small Multi-Processors SMP
 - Memory (cache) coherence
 - Models of consistency

Past and Future

- Past
 - Supercomputers
 - only one manufacturer ever profitable
 - national flagships
 - Massively parallel machines
 - cube machines
 - programming limits
 - few customers
 - Interconnection networks
 - cross-bars
 - nlogn nets
 - multiple buses

Past and Future

Future

- Power/energy consumption
- Simultaneous Multi-Threading
- Memory gap
- Binary translation
 - Transmeta cycle simulator history
 - Java machines comes in various forms
- Servers SMP, CMP
- Network processors

Relevant to SOC Research

Power/Energy Consumption

- CA research is late to this party
- Is the leading restriction to performance now
 - solutions are coming fast
- Push from Intel
 - not just portables
- ISP heavy duty factory
 - ~2,000,000 Watts
 - lead cost driver is power ~25%
 - stats from Intel (Deo Singh) talk at CoolChips Tutorial

Power: Basic Ideas for Architects

- Power = k A V² C f + V I_{leak}
 - A = activity level how many nodes toggled
 - V = power supply voltage
 - C = capacitance of signal lines
 - f = toggle frequency
 - Why not reduce V to a small value?
 - $f_{\text{max}} \propto (V V_t)^2 / V$
 - can't simply reduce V
 - $_{leak}$ ≤ exp(- qV_t/kT)
 - future problem 0.10 um and below
- Corollary: parallelism is good

Further Corollary: Just-in-time Computation

Red profile saves saves power

- Useful when process is rate determined
 - Mpeg requires 30 frames / second and no more

Observation: Idle Time in Desktop Applications

Application	Idle Time
Windows Media Player - AVI	73.50%
Windows Media Player - MP3	92.80%
QuickTime - Video	44.40%
QuickTime - MP3	92.80%
HotJava	78.00%
Internet Explorer	90.50%
Cloudscape	29.70%
lmage/J	42.20%
PowerTranslator	29.40%

*Done with Kris Flautner UM and Rich Uhlig Intel Microprocessor Research Lab using a 4-processors Pentium III system. See: K. Flautner, S. Reinhardt, and T. Mudge. Thread-level parallelism and interactive performance of desktop applications. ASPLOS-IX, Nov. 2000, pp. 129-138.

- How do we take advantage of this?
 - Dynamic voltage scaling work

Trends Against Low Power

- Speculation for high performance
 - branch prediction
 - trace caches
 - prefetching
 - runahead
 - etc.
- Interpretation more popular again
 - JVMs
 - can compilers help us with JITs?
 - can hardware assists help?

Next Challenge: Leakage

- $l_{leak} \propto exp(-qV_t/kT)$
 - the trend is smaller devices
 - need a lower V to avoid large electric fields
 - limits V_t a 10-15% decrease doubles I_{leak}
- Leakage current will dominate power
 - activity based solutions will not work
 - further reduced as we see less head room for V
- Dual (multiple) V_t
 - low (fast) V_t only on critical paths
 - shield caches with low V_t and L1 with high (slow) V_t

Activity-based Approach Breaks Down

- Dual thresholds, etc.
- Turn off unused subsystems
- Loss of state
- Selective state savings to speed up restart
 - fast vs slow flip-flops
 - caching

Heterogeneous Multis for SOCs

- Functional multiprocessing makes power management easier
 - particularly leakage
- Dynamic voltage scaling useful
 - not really a CA development
- DSP tradition of slower clocks with higher memory bandwidths – multiple sources
 - allows lower V
 - implicit just-in-time power?

Power & SOCs

- Reduce chip I/O
 - Improved packaging can diminish this
 - MCM/flip-chip etc
- Ideal for embedded DRAM
 - 3 6x improvements in density over SRAM
 - more cache and other memory structures
 - not that slow < 10 nS</p>
 - why not match to cpus don't sell GHz

Simultaneous Multi-Threading

- Makes sense for complex high end processors –
 Alphas, P4s
 - thread management can be absorb into out of order logic
 - Alpha team claim 2% increase in chip area
- Intra process threads don't show much parallelism
 - code doesn't use threads for parallelism
 - chicken and egg problem easing
 - data parallel a different story software needs rewrite
 - make an argument for response time
- Independent threads multiprogramming
 - servers makes sense

Memory Gap & SOCs

- Memory technology focused on density
 - 4x per two years
- Processor technology focused on speed
 - 2x per two years
- Partly an artifact of MHz (now GHz)
 - desktops sold on clock speed 1.7 GHz Pentium4

New Memory Technologies

- Rambus, DDR SDRAM
 - Capitalize on the inherent bandwidth of RAM
- Suitable for streaming data
 - Bandwidth rather than latency
- Obvious candidate for
 - Video
 - Networking

Binary Translation & SOCs

- Long tradition
 - IBM emulation of 709 on the 360
 - Recently
 - FX32 Alpha-to-x86
 - strong technology price didn't make sense
 - Transmeta's morphing
 - on-the-fly translation
 - ARM's Jizelle
 - microcode support
- ISA CPU-to-DSP to leverage legacy code

Java & SOCs

- Endorsed by Nokia
 - Jizelle etc.
- Java processors have not been a success
 - microJava & picoJava
- Real-time Java
 - notion of time
 - garbage collection

Server Technology & SOCs

- SMP small multiprocessor technology
 - extensive work on coherence
 - memory consistency models weak, strong etc.
- Small can be as large as 250
 - Interconnect becomes critical
 - "factored" crossbars
- CMP chip multiprocessor technology
 - shared cache
 - embedded DRAM makes this interesting

Why Multiprocessors?

- Better off using a uniprocessor for programmability
 - cost and physical limit
- Power considerations suggest MP
 - Leakage may reverse this view
- Mainstream world
 - Processors developed for uniprocessors can be naturally used for servers
 - independent job streams
 - database queries

Multiprocessors (cont.)

- Less success for parallel processing
 - programming
 - coherence scaling
 - but data parallel works
 - heterogeneous works too
- Key enabler
 - software
 - development environments for SOCs
- Our research
 - SimpleScalar for SOCs SRC project
 - first example ARM + C30

Conjecture: Convergence Architectures

- How much heterogeneity can be covered with a general purpose processor
 - future performance
 - future power
- Programming model is known
 - extensions necessity
 - MAC, mmx, bit ops, etc.
 - compiler support Tensilica model
- There will always be a cost point favoring some special coprocessors
- IO structures will differentiate