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Outline

❚ Real-time environmental video processing.
❚ Architectural alternatives for media

processing.
❚ Jason Fritts PhD work: Programmable

VSPs.
❚ Hua Lin PhD work: loop optimizations and

memory systems.
❚ Speculations on multiprocessor

architectures.



Architectural questions

❚ How much computational horsepower is
required for interesting applications?

❚ How do we exploit levels of parallelism?
❙ Instruction-level (static, dynamic);
❙ Data-level;
❙ Process-level.

❚ How do we estimate performance/power
at each level?



Multimedia requirements

❚ Complex algorithms:
❙ multiple phases;
❙ data and control.

❚ Today’s applications: compression.
❚ Tomorrow’s applications: analysis.
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Smart cameras for smart
rooms

❚ Coordinated cameras track subject:



Ozer et al: human activity
recognition
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Our environmental video
system

❚ Ozer/Wolf:
❙ multiple Trimedia processors attached to PC;
❙ plan to introduce multiple cameras.



Real-time analysis



The multimedia processing
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Architectural styles for
video

❚ SIMD
❚ Heterogeneous.
❚ ISA extensions.
❚ VLIW.



SIMD processing

❚ Broadcast operation to an array of
processing elements, each of which has
its own data.

❚ Well-suited to regular, data-oriented
operations.
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Block motion estimation
architecture
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Data flow in block motion
estimation
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Hetereogeneous
multiprocessor design

❚ Will need accelerators for quite some time
to come:
❙ power;
❙ performance.

❚ Candidates for acceleration:
❙ complex coding and error correction;
❙ motion estimation.



Expensive operations

Expensive operations can be speeded up by
special-purpose units:
❙ specialized memory accesses;
❙ specialized datapath operations.

Special-purpose units may be useful for only
certain parameters:
❙ block size;
❙ search region size.
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ISA extensions

Split data word into subwords to provide
single instruction multiple data (SIMD)
parallelism.

Assemble CPU word from pixels:

pixel 1 pixel 2 pixel 3 pixel 4

16 bits

64 bits

16 bits 16 bits 16 bits



Why ISA extensions

❚ Easy: provide significant parallelism with
small changes to architecture.

❚ Cheap: can be implemented with
❚ Effective: provide 2x-4x speedups.
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VLIW architectures

❚ Parallel function units,  shared register
file, static scheduling of operations:

register file

function
unit
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...
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VLIW’s popularity

❚ Invented 20 years ago, popular today:
❙ Good compiler technology.
❙ Low control overhead.
❙ Systems-on-silicon eliminates pinout

problems.

❚ Advantages for video:
❙ Embarrassing parallelism with static

scheduling opportunities.
❙ Less problem with code compatibility.
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Architectural experiments

❚ Fritts/Wolf:
❙ characterize applications;
❙ compare architectural styles (VLIW,

superscalar);
❙ evaluate architectural parameters (clock rate,

pipelining, etc.).



VLIW processor model
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Workload characteristics
experiments

❚ Goal: compare media workload
characteristics to general-purpose load.

❚ Used MediaBench benchmarks.
❚ Compiled on Impact compiler, measured

with with Impact simulator.



Basic characteristics

❚ Comparison of operation frequencies with SPEC
❙ (ALU, mem, branch, shift, FP, mult) => (4, 2,

1, 1, 1, 1)
❙ Lower frequency of memory and floating-point

operations
❙ More arithmetic operations
❙ Larger variation in memory usage

❚ Basic block statistics
❙ Average of 5.5 operations per basic block
❙ Need global scheduling techniques to extract

ILP



Basic characteristics,
cont’d

❚ Static branch prediction
❙ Average of 89.5% static branch prediction on

training input
❙ Average of 85.9% static branch prediction on

evaluation input
❚ Data types and sizes

❙ Nearly 70% of all instructions require only 8
or 16 bit data types



Breakdown of data types
by media type
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Multimedia looping
characteristics

❚ Highly loop centric
❙ 95% of CPU time in two innermost loop levels
❙ Significant processing regularity
❙ About 10 iterations per loop on average

❚ Complex loop control
❙ = average # of instructions executed per loop

invocation/total # of loop instructions
❙ Average path ratio of 78%--high complexity



Average iterations per loop
and path ratio
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Instruction level
parallelism

❚ Instruction level parallelism
❙ base model: single issue using classical

optimizations only
❙ parallel model:8-issue

❚ Explores only parallel scheduling
performance
❙ assumes an ideal processor model
❙ no performance penalties from branches, cache

misses, etc.



ILP results
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VSP architecture
evaluation

❚ Determine fundamental architecture
style
❙ Statically Scheduled => Very Long Instruction

Word (VLIW)
❙ Dynamically Scheduled => Superscalar

❚ Examine variety of architecture
parameters
❙ Fundamental Architecture Style
❙ Instruction Fetch Architecture
❙ High Frequency Effects
❙ Cache Memory Hierarchy



Fundamental architecture
evaluation

❚ Major issues:
❙ Static vs. dynamic scheduling
❙ Issue width

❚ Focused on non-memory limited
applications.



Architectural model

❚ 8-issue processor
❚ Operation latencies targeted for 500

MHz to 1 GHz
❚ 64 integer and floating-point registers
❚ Pipeline:  1 fetch, 2 decode, 1 write

back, variable execute stages



Architectural model, cont’d

❚ 32 KB direct-mapped L1 data cache
with 64 byte lines

❚ 16 KB direct-mapped L1 instruction
cache with 256 byte lines

❚ 256 KB 4-way set associate on-chip
L2 cache

❚ 4:1 Processor to external bus
frequency ratio



Static versus Dynamic
Scheduling
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Increasing issue width
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Instruction fetch
architecture
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Impact of higher processor
frequencies

❚ Increased wire delay at higher
frequencies may cause:
❙ Longer operation latencies
❙ Delayed bypassing



Processor frequency
models

❚ Three processor models with
different operation latencies
❙ 250 MHz – 500 MHz: stores – 1, loads –

2, FP – 3, mult – 3, div – 10
❙ 500 MHz – 1 GHz: stores – 2, loads –

3, FP – 4, mult – 5, div – 20
❙ 1 GH – 2 GHz: stores – 3, loads – 4, FP

– 5, mult – 7, div – 30



Processor frequency
results

❚ 10% performance difference between
processor models

❚ 35% performance degradation for
delayed bypassing

❚ Out-of-order scheduling and
superscalar compilation least 
susceptible to high frequency effects
❙ 20-30% less performance degradation



Memory latency
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Evaluation of
cache memory hierarchy

❚ Conclusions
❙ L2 cache has little impact on performance

❘ useful for storing state during context
switches

❙ External memory miss latency is primary
memory problem

❘ Streaming data structures will help alleviate
this

❙ External memory bandwidth is second-
most problem



Loop optimizations

❚ Long-standing topic in compilers: identify
and extract parallelism.

❚ Lin/Wolf: new twists for embedded
systems:
❙ develop more unified model for searching

design space;
❙ configure main memory, cache as well as

optimize program.



Previous Work

❚ Loop transformation
❙ Banerjee, Wolfe, Wolf & Lam, McKinley, Cierniak&Li

❚ Data layout transformation
❙ Kandemir&Ramanujam, O'Boyle&Knijnenburg, Panda&Dutt, Chatterjee

❚ [Cierniak&Li]  Unifying data and control transformation for
distributed shared-memory machine
❙ Stride vector:   TTv = LTm

❚ [Kandemir] Improving Cache locality by a combination of loop
and data transformation
❙ Consider the fastest changing dimension
❙ Search for the transformation matrix



Affine Representation

for i = 2, n

  for j = 2, n

    y[i,j]=0.5*(x[i-1,j-1]+x[i-1,j])

end                          (1)
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Varieties of Transformations

❚ Loop transformation:
❙ Affect all array references in the transformed loop nest
❙ Do not affect references in other loop nest
❙ Data dependence vectors will change after transformation

❚ Data layout transformation:
❙ Affect all references to the transformed array in the program
❙ Do not affect references to other arrays, whether inside or not

inside the same loop
❙ Do not affect data dependence relationships



Data access locality

❚ Aspects of locality:
❙ Spatially close: Elements of the fastest changing

dimension of array
❙ Temporarily close: Iterations of the innermost loops

❚ Can improve performance by putting local
accesses in adjacent locations:

A[0,0]

A[1,0]

A[2,0]

A[3,0]

...

...

...

A[0,0]
A[1,0]
A[2,0]
A[3,0]

A[0,0] A[1,0] A[2,0] A[3,0]



Our Work

❚ The starting point
❙ Locality space instead of innermost loop
❙ Integrated cache configuration and data locality optimization
❙ Constructing the legal transformation matrix
❙ Unified loop and data layout transformation

❚ Other initiatives
❙ Dimensionality of the locality space and reuse vector space
❙ Individual statement instead of loop body as the atomic unit of

the iteration space
❙ Locality space for arrays



Locality Space

❚ Locality space                        is defined by the m
innermost loops.
❙ Dimensionality of the locality space m is determined by the

cache configuration and the number of iterations in the
innermost loops.

❙ Data locality optimization is to maximize the data reuse in the
locality space.

❙ Each level of memory hierarchy corresponds to one level of
locality space si  with                                 (H : level of the
memory hierarchy)

❚ Cache configuration and data locality optimization are
integrated with the concept of locality space

),...,,span( 11 −−− mNNN eee
rrr

Hsss ⊂⊂⊂ L21



Compacting the Reuse Distance

❚ Compacting the Reuse Distance:
❙ For a reuse vector     that is not in the locality space, i.e.  

                               , a non-singular transformation T
can be applied s.t.

❚ For a set of reuse vectors:
❙ The dimensionality of the reuse vector space
❙ Choosing among reuse vectors for better locality: reuse

quality, legal transformation

❚ Constructing legal transformation matrix
❚ To capture more reuse

❙ Reducing the dimensionality of the reuse vector space
❙ Increasing the dimensionality of the locality space

r
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Reducing the Dimensionality of the
Reuse Vector Space

 

for i = 2, n

  for j = 2, n

    x[i,j]=x[i,j]-128      (S1)
    y[i,j]=0.5*(x[i-1,j-1]+x[i-1,j]) (S2)
    z[i,j]=x[i,j-1] (S3)
end
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❚ Before loop alignment
   Spatial reuse (not shown in the figure):

[0, 1]: S1→S1,  [0, 1]: S2→S2,  [0, 1]: S3→S3
   Temporal reuse

[1, 0]: S1→S2,  [1, 1]: S1→S2,  [0, 1]: S1→S3

❚ After loop alignment [−1, 0]: S2
   Spatial reuse (not shown in the figure):

[0, 1]: S1→S1,  [0, 1]: S2→S2,  [0, 1]: S3→S3
   Temporal reuse

[0, 0]: S1→S2,  [0, 1]: S1→S2,  [0, 1]: S1→S3



Reducing the Dimensionality of the
Reuse Vector Space (cont’d)
for i = 1, n

  for j = 2, n

    if i=1 then

      y[2,j]=0.5*(x[1,j-1]+x[1,j])

    else if i=n then

      x[n,j]=x[n,j]-128

      z[n,j]=x[n,j-1]

    else

      x[i,j]=x[i,j]-128

      y[i+1,j]=0.5*(x[i,j-1]+x[i,j])

      z[i,j]=x[i,j-1]

    endif

end

❚ Minimizing the Dimensionality of the Reuse Vector
Space



Increasing the Dimensionality of
the Locality Space

❚ Loop tiling increases dimensionality of locality space.
❚ Change the cache configuration:

❙ Increasing the cache size
❙ Reducing the line size if the program does not have good

spatial locality

❚ The procedure:
Loop alignment → non-singular transformation → loop tiling and

cache configuration adjustment



More Spatial Reuse with Non-
singular Transformation for Array
Layout

❚ Locality space for arrays:
span(                         )                span(                          )

! (                     ) : the last m columns of the reference
matrix A (or AT −1 with affine loop transformation T ).

! Let S = span(                         ): locality space for the array

❚ Creating spatial reuse
❙ If the fastest changing dimension of an array is not in its

locality space, i.e.           , a non-singular transformation TA
can be applied to the array layout s.t.

❚ Dimension interchange:
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In-dimension Stride Vector

❚ In-dimension Stride Vector (ISV)
♦ Distance vector between two iterations that access adjacent

data within the same dimension of an array

❚ Why ISV?
❙ Each dimension of the array has its own ISV
❙ If the dimension is switched to be the fastest changing

dimension, its ISV becomes the self-spatial reuse vector
❙ Automate the unification of loop transformation and array

dimension interchange

❚ How to compute ISV: )ker()ker(ISV AAjj −=



An Example

for i = 1, N
for j = 1, N
   for k = 1, N
    c(i,j) = c(i,j) + a(i,k)*b(k,j)

end

ISV spaces:
Array c: 1st ISV space: span{(1, 0, 0)},   2nd ISV space: span{(0, 1, 0)}
Array a: 1st ISV space: span{(1, 0, 0)},   2nd ISV space: span{(0, 0, 1)}
Array b: 1st ISV space: span{(0, 0, 1)},   2nd ISV space: span{(0, 1, 0)}

One possible transformation: Assuming row major, T : (1, 0, 0) ⇒  (0, 0, 1)
for l = 1, N

for m = 1, N
   for n = 1, N
    c(m,n) = c(m,n) + a(l,n)*b(m,l)

end

Spatial
locality

Temporal
locality



Experimental Result (Matrix
Multiplication)
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Figure:  Miss rate for Matrix Multiplication



Multiprocessor
architectures for video

❚ One VLIW is not a good idea:
❙ limited ability to extract parallelism from one

process;
❙ multiple processes are not easily described

for instruction-level scheduling;
❙ applications have natural decomposition.

❚ Symmetric multiprocessor is bad:
❙ don’t want all shared memory space;
❙ longer wires lead to more power.



Smart camera CPU times
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Smart camera CPU times,
cont’d.
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Observations on smart
camera application

❚ Feed-forward communication.
❚ Somewhat unbalanced process-process

CPU times.
❚ Significant variation in frame-to-frame

CPU time.



Problems with uniform
shared memory

❚ Conflicts cause
scheduling problems.

❚ Statically-scheduled
compiler has problems
with:
❙ depth of scheduling;
❙ non-deterministic

conflicts.
in

te
rc

on
ne

ct
io

n
ne

tw
or

k

memory
element

memory
element

memory
element

...



Local shared memories

❚ Use locally shared
memories to provide
more predictable
computation times.

❚ Provide API for
interprocess
communication.

PE 1 PE 2Shared
memory

mem mem



Heterogeneous
architectures

❚ Different phases have very different
characteristics:
❙ pixel-oriented;
❙ line-oriented;
❙ floating-point parameter matching.

❚ Different processing elements can be used
for different stages.



Summary

❚ Multimedia applications are already more
complex and will become more so:
❙ multiple algorithms;
❙ complex control and data.

❚ Instruction-level parallelism helps, but
isn’t enough to handle complex
applications.


