Multiprocessor . SoCs for
Video Processing

Wayne Wolf
MediaWorks Technology
and Princeton University

Outline

Real-time environmental video processing.

Architectural alternatives for media
processing.

Jason Fritts PhD work: Programmable
VSPs.

Hua Lin PhD work: loop optimizations and
memory systems.

Speculations on multiprocessor
architectures.

Architectural questions

How much computational horsepower Is
required for interesting applications?

How do we exploit levels of parallelism?
Instruction-level (static, dynamic);

Data-level:;
Process-level.

How do we estimate performance/power
at each level?

Multimedia requirements

Complex algorithms:
multiple phases;
data and control.

Today’s applications: compression.
Tomorrow’s applications: analysis.

MPEG-style compression
engine

Block motion est

Imation

3-step search:

search area

Smart cameras for smart
rooms

Coordinated cameras track subject:

Ozer et al: human activity
recognition

Pixel Values

\ OBJECT DETECTION

OBJECT DETECTION

A

Extracted Area

Motion Vectors

Extracted Area

Our environmental video
system

Ozer/Wolf:

multiple Trimedia processors attached to PC;
plan to introduce multiple cameras.

Real-time analysis

The multimedia processing
funnel

pixel processing

Edge extraction
Data Data

abstraction volume

principal component analysis,
hidden Markov models

Architectural styles for
video

SIMD
Heterogeneous.

|SA extensions.
VLIW.

SIMD processing

Broadcast operation to an array of
processing elements, each of which has

Its own data.

Well-suited to reqular, data-oriented
operations.

A block correlation
architecture

256

Block motion estimation
architecture

frame A

frame B

Data flow In block motion
estimation

time PEO PE1 PE2

1 a(0,1)-b(0,1) ,Q<b(0,1)
2 do,Z)-b(o,@—#m,a

16 a1,0-b(1,0) | a(0,15)-b(0,16) a(0,14)-b(0,16)
17 a1,1)-b1,1) a1,0-b(0,1) |a0,15)-b(0,17)
18 a1,2-b(1,2) a1,1)-b(0,2) a(1,0)-b(0,2)

Hetereogeneous
multiprocessor design

Will need accelerators for quite some time
to come:

power;
performance.

Candidates for acceleration:
complex coding and error correction,;
motion estimation.

EXpensive operations

Expensive operations can be speeded up by
special-purpose units:

specialized memory accesses,;
specialized datapath operations.
Special-purpose units may be useful for only
certain parameters:
block size;
search region size.

Philips MPEG2 encoder
(ISSCC ‘97)

video data
compressed data

|ISA extensions

Split data word into subwords to provide
single instruction multiple data (SIMD)
parallelism.

Assemble CPU word from pixels:

<— 16 bits —><— 16 bits —><— 16 bits —><<— 16 bits —>

< 64 bits >

Why ISA extensions

Easy. provide significant parallelism with

small changes to architecture.
Cheap: can be implemented wit
Effective: provide 2x-4x speedu

1
0S.

Packed compare
Instruction

Used for chromakey:

to packed logical op

eim S

Parallel function units, shared register
file, static scheduling of operations:

register file

Instruction decode and memory

VLIW’s popularity

Invented 20 years ago, popular today:
Good compiler technology.
Low control overhead.

Systems-on-silicon eliminates pinout
problems.

Advantages for video:

Embarrassing parallelism with static
scheduling opportunities.

Less problem with code compatibility.

Trimedia TM-1

video In video out
audio In audio out
Ke serial

timers VLD co-p

Image co-p

VLIW CPU
PCI

Architectural experiments

Fritts/Wolf:

characterize applications;

compare architectural styles (VLIW,
superscalar);

evaluate architectural parameters (clock rate,
pipelining, etc.).

VLIW processor

Workload characteristics
experiments

Goal: compare media workload
characteristics to general-purpose load.

Used MediaBench benchmarks.

Compiled on Impact compiler, measured
with with Impact simulator.

Basic characteristics

Comparison of operation frequencies with SPEC

(ALU, mem, branch, shift, FP, mult) => (4, 2,
1, 1,1, 1)

Lower frequency of memory and floating-point
operations

More arithmetic operations
Larger variation in memory usage
Basic block statistics
Average of 5.5 operations per basic block

Need global scheduling techniques to extract
ILP

Basic characteristics,
cont’d

Static branch prediction
Average of 89.5% static branch prediction on
training input
Average of 85.9% static branch prediction on
evaluation input

Data types and sizes

Nearly 70% of all instructions require only 8
or 16 bit data types

Breakdown of data types
by media type

M floating-poirt
M poirters

B word

[helfword

[byte

glOO%—]

@ 80% -

o

2 60%

©

g 4%

ko)

o 20%

jo

D: OO/O | | | | | | | |
¢ .& O XN - ¢ o W

FTEL T L & ¢

Multimedia looping
characteristics

Highly loop centric
95% of CPU time in two innermost loop levels
Significant processing regularity
About 10 iterations per loop on average

Complex loop control

= average # of instructions executed per loop
iInvocation/total # of loop instructions

Average path ratio of 78%--high complexity

Average Iterations per loop
and path ratio

5 8 8

Average Number of Iteratior
H

1||||$|[

*{\\
&'&
Media Type

- average path ratio

&

Path Ratic
O o o ©
N N (@)] 0] =

o

- average number of
loop iterations

HitdH

video imege gaphics auwdio speech secuity average
Media Type

Instruction level
parallelism

Instruction level parallelism

base model: single issue using classical
optimizations only

parallel model:8-issue

Explores only parallel scheduling

performance

assumes an ideal processor model

no performance penalties from branches, cache
misses, etc.

ILP results

[8-issue classical only

[8-issue classical w/ inlining
I 8-issue superblock

l 8-issue hyperblock

video

image

graphics

audio
Media Type

gpeech

security average

VSP architecture
evaluation

Determine fundamental architecture
style

Statically Scheduled => Very Long Instruction
Word (VLIW)

Dynamically Scheduled => Superscalar

Examine variety of architecture

parameters
Fundamental Architecture Style
Instruction Fetch Architecture
High Frequency Effects
Cache Memory Hierarchy

Fundamental architecture
evaluation

Major issues:
Static vs. dynamic scheduling
Issue width

Focused on non-memory limited
applications.

Architectural model

8-Issue processor

Operation latencies targeted for 500
MHz to 1 GHz

64 Integer and floating-point registers

Pipeline: 1 fetch, 2 decode, 1 write
back, variable execute stages

Architectural model, cont’'d

32 KB direct-mapped L1 data cache
with 64 byte lines

16 KB direct-mapped L1 instruction
cache with 256 byte lines

256 KB 4-way set associate on-chip
L2 cache

4:1 Processor to external bus
frequency ratio

Static versus Dynamic

Scheduling

2.5

2 15

0.5 -

Classical Superscalar Hyperblock
Compilation Method

O VLIW

O in-order superscalar

@ out-of-order superscalar
W VLIW w/ perfect caches
M in-order superscalar w/

perfect caches

W out-of-order superscalar w/
perfect caches

Increasing issue width

25
2
15

e
-1
0.5

0

=
o

| ssue-Width

10

—e— VLIW

—=— Inrorder
superscalar

—a— out-of-order
superscalar

Instruction fetch
architecture

Unbuffered fetch vs. decoupled fetch:

6
© 5 O VLIW w/ fixed-
= width instrs
2 4 B VLIW w/ variable-
o 3 width instrs
= Il in-order
§ 2 superscalar
= 1 Hl out-of-order
0 d— o . superscalar

Classical Superscalar Hyperblock
Conmpilation Method

Impact of higher processor
frequencies

Increased wire delay at higher
frequencies may cause:

Longer operation latencies
Delayed bypassing

Processor frequency
models

Three processor models with
different operation latencies

250 MHz — 500 MHz: stores — 1, loads —
2, FP -3, mult-3, div-10
500 MHz — 1 GHz: stores — 2, loads —
3, FP -4, mult -5, div - 20

1 GH — 2 GHz: stores — 3, loads — 4, FP
-5 mult-7, div- 30

Processor frequency
results

10% performance difference between
processor models

35% performance degradation for
delayed bypassing

Out-of-order scheduling and
superscalar compilation least
susceptible to high frequency effects

20-30% less performance degradation

Memory latency

*Effect of memory latency on access to 64- byte line on L2 miss:

1.8
h_{ 1.6 am— —d—_ — —e— video
5\ 1 2 ;\\ graphics
P
o 0.8 — —*— gpeech
2 06 \.\ \ : —e— security
% 0.4 - \\“\ —+— decode
< 0.2 —x —=— encode
O | | | | |
25 50 100 200 400
Memory Latency (# cycles to access

64-byte line)
More susceptable to memory latency than bandwidth.

Evaluation of
cache memory hierarchy

Conclusions

L2 cache has little impact on performance
useful for storing state during context
switches

External memory miss latency is primary

memory problem
Streaming data structures will help alleviate
this

External memory bandwidth is second-

most problem

Loop optimizations

Long-standing topic in compilers: identify
and extract parallelism.

Lin/Wolf: new twists for embedded
systems:

develop more unified model for searching
design space;

configure main memory, cache as well as
optimize program.

Previous Work

Loop transformation
Banerjee, Wolfe, Wolf & Lam, McKinley, Cierniak&Li

Data layout transformation
Kandemir&Ramanujam, O'Boyle&Knijnenburg, Panda&Dutt, Chatterjee

[Cierniak&Li] Unifying data and control transformation for
distributed shared-memory machine

Stride vector: T'v=LTm
[Kandemir] Improving Cache locality by a combination of loop
and data transformation

Consider the fastest changing dimension
Search for the transformation matrix

Affine Representation

for i = 2, n i A
for j =2, n A
y[i1,j]1=0.5*(x[i-1,j-1]+)
end (1)

Two-dimension loop nest: (€.,8&)=(10],[01)

N-dimensionloop nest: (€,8,,...,6,)

Non-singular loop transformation: T

-1 0

0 1 ood 1
. [il
JD%)lD

0

n

(1) E: Al +c A Reference Matrix
N

1] El
-
DE_J_I:I
C1]

Varieties of Transformations

Loop transformation:
Affect all array references in the transformed loop nest
Do not affect references in other loop nest
Data dependence vectors will change after transformation

Data layout transformation:

Affect all references to the transformed array in the program

Do not affect references to other arrays, whether inside or not
Inside the same loop

Do not affect data dependence relationships

Data access locality

Aspects of locality:

Spatially close: Elements of the fastest changing

dimension of array

Temporarily close: Iterations of the innermost loops

Can improve performance by putting local
accesses In adjacent locations:

A[0,0]

A[1,0]

A[2,0]

A[3,0]

Our Work

The starting point
Locality space instead of innermost loop
Integrated cache configuration and data locality optimization
Constructing the legal transformation matrix
Unified loop and data layout transformation

Other initiatives
Dimensionality of the locality space and reuse vector space

Individual statement instead of loop body as the atomic unit of
the iteration space

Locality space for arrays

Locality Space

Locality space span(€,,&,_;;..-.€_mna) is defined by the m
Innermost loops.

Dimensionality of the locality space m is determined by the
cache configuration and the number of iterations in the
Innermost loops.

Data locality optimization is to maximize the data reuse in the
locality space.

Each level of memory hierarchy corresponds to one level of
locality space s; with S, LIS, L1--- 1S, (H: level of the
memory hierarchy)
Cache configuration and data locality optimization are
Integrated with the concept of locality space

Compacting the Reuse Distance

Compacting the Reuse Distance:
For a reuse vector T that is not in the locality space, i.e.
rUspan(€y,€y—.€y-m1) , a non-singular transformation T
can be applied s.t. Tr Ospan(€y, €y ;s Enomet)
For a set of reuse vectors:
The dimensionality of the reuse vector space

Choosing among reuse vectors for better locality: reuse
quality, legal transformation

Constructing legal transformation matrix
To capture more reuse

Reducing the dimensionality of the reuse vector space
Increasing the dimensionality of the locality space

Reducing the Dimensionality of the
Reuse VVector Space

for 1 =2, n
for j =2, n
X[i1,j]=x[i,]]-128 (S1)
y[i,j]=0.5%(x[i-1,j-1]+x[i-1,j]) (S2)
z[1,)]=x[1,]-1] (S3)
end
Before loop alignment
Spatial reuse (not shown in the figure): >

[0, 1]: S1-S1, [0, 1]: S2-S2, [0, 1]: S3-S3 _ 2 3 4 5 |
Temporal reuse

[1, 0]: S1-S2, [1, 1]: S1-S2, [0, 1]: S1-S3 i e

After loop alignment [-1, 0]: S2 O
Spatial reuse (not shown in the figure): 3| © ®

[0, 1]: S1-S1, [0, 1]: S2-S2, [0, 1]: S3-S3
Temporal reuse 2l ©

[0, 0]: S1-S2, [0, 1]: S1-S2, [0, 1]: S1-S3

Reducing the Dimensionality of the
Reuse Vector Space (cont’'d)

for i =1, n
for j =2, n
If 1=1 then
y[2,)]1=0.5*(x[1,]-1]+x[1,]])
else if 1=n then
x[n,j]=x[n,j]-128
z[n,j]=x[n,j-1]
el se
x[i,j]=x[i1,]]-128
y[i+1,j]1=0.5%(x[i,j-1]+x[i,j])
z[1,]]=x[i,]-1]
endi f
end

Minimizing the Dimensionality of the Reuse Vector
Space

Increasing the Dimensionality of
the Locality Space

Loop tiling increases dimensionality of locality space.

Change the cache configuration:
Increasing the cache size

Reducing the line size if the program does not have good
spatial locality

The procedure:

Loop alignment — non-singular transformation - loop tiling and
cache configuration adjustment

More Spatial Reuse with Non-
singular Transformation for Array
Layout

Locality space for arrays:

span(€y,6y_1rCymy) OATE span(@y,ay_y8yomg)

> (Ays3y_ps-Ayoma) the last m columns of the reference
matrix A (or AT ! with affine loop transformation T).

> Let S =span(ay,ay.,-ay-mq). lOcality space for the array

Creating spatial reuse

If the fastest changing dimension of an array is not in its
locality space, i.e. e, 1S, a non-singular transformation T,
can be applied to the array layout s.t. €, JT,S

Dimension interchange: {6.8,..8}NSzp

INn-dimension Stride VVector

In-dimension Stride Vector (1SV)

¢ Distance vector between two iterations that access adjacent
data within the same dimension of an array

Why ISV?
Each dimension of the array has its own ISV

If the dimension is switched to be the fastest changing
dimension, its ISV becomes the self-spatial reuse vector

Automate the unification of loop transformation and array
dimension interchange

How to compute ISV: 1SV, =ker(A;) —ker(A)

An Example

for i = N
for j 1, N
1

for k: ,
c(i,]) =

nre

N
C
end

ISV spaces:

Array c: 1st ISV space: spé
Array a: 1st ISV space: spa
Array b: 1st ISV space: spa

One possible transformation
for | =1, N
for m=1, N

for n =1, N

Spatial
locality

2nd |
2nd |
2nd |

(i,j) +a(i,k)*b(k,])

Tempora

locality
5V space: span{(0, 1, 0)}
5V space: span{(0, 0, 1)}
5V space: span{(0, 1, 0)}

Assuming flow major, T: (1, 0,0) O (O, 0, 1)

c(mn) = c(mn) + a(l,n*b(ml)

end

Experimental Result (Matrix
Multiplication)

0.3

B Pre-optimization

B Tiling

O Optimized

Cfgl Cfg2 Cfg3 Cfg4

Cfgl: n=128, I=8, a=1, Cfg2: n=128, |I=8, a=2
Cfg3: n=256, I=8, a=1, Cfg4: n=256, |I=8, a=2
n : number of line sets, /: line size in words
a . degree of associativity
Figure: Miss rate for Matrix Multiplication

Multiprocessor
architectures for video

One VLIW is not a good idea:

limited ability to extract parallelism from one
Process;

multiple processes are not easily described
for instruction-level scheduling;

applications have natural decomposition.
Symmetric multiprocessor is bad:

don’'t want all shared memory space;
longer wires lead to more power.

Processing time (msec)

Smart camera CPU times

29.5ms

Skin Detection

29

28.51

28~

275

27

5 10 15

Skin detection

|
20
Frame number

I
25

45

6/7.2ms |
Contour Following

67.2 T T

67 .

66.8 - .

Processing time (msec)
(2] (2]
o o
D (]
T T
| |

o
o)
[
T
1

66 - .

65.8 - .

65.6 I I I I I
0 5 10 15 20 25 30 35 40 45

Frame number

Contour detection

Smart camera CPU times,
cont’d.

250 ms 35ms

Superellipse Fitting Graph Matching
350 T T T 35
3001 301
251
250
o
i s
E 2
2 E 0l
= ()
= 2001 =
= =
0 j=2]
< 15+
150 a
10
100
5|
50 | | | | | | |
0 5 10 15 20 25 30 35 40 45
Frame number 0 | | I I I | | |
0 5 10 15 20 25 30 35 40 45

Frame number

Superellipse fitting Graph matching

Observations on smart
camera application

Feed-forward communication.

Somewhat unbalanced process-process
CPU times.

Significant variation in frame-to-frame
CPU time.

Problems with uniform
shared memory

Conflicts cause
scheduling problems.

Statically-scheduled
compiler has problems
with:

depth of scheduling;

non-deterministic
conflicts.

| ocal shared memories

Use locally shared
memories to provide | Mem

more predictable
computation times. Shared |
Provide API for Hatiad

Interprocess
communication.

Heterogeneous
architectures

Different phases have very different
characteristics:

pixel-oriented,;

line-oriented;

floating-point parameter matching.

Different processing elements can be used
for different stages.

Summary

Multimedia applications are already more
complex and will become more so:
multiple algorithms;
complex control and data.

Instruction-level parallelism helps, but
Isn’t enough to handle complex
applications.

