
Multiprocessor SoCs for
Video Processing

Wayne Wolf
MediaWorks Technology
and Princeton University

Outline

❚ Real-time environmental video processing.
❚ Architectural alternatives for media

processing.
❚ Jason Fritts PhD work: Programmable

VSPs.
❚ Hua Lin PhD work: loop optimizations and

memory systems.
❚ Speculations on multiprocessor

architectures.

Architectural questions

❚ How much computational horsepower is
required for interesting applications?

❚ How do we exploit levels of parallelism?
❙ Instruction-level (static, dynamic);
❙ Data-level;
❙ Process-level.

❚ How do we estimate performance/power
at each level?

Multimedia requirements

❚ Complex algorithms:
❙ multiple phases;
❙ data and control.

❚ Today’s applications: compression.
❚ Tomorrow’s applications: analysis.

MPEG-style compression
engine

motion
estimator

+ DCT Q
variable
length
coder

buffer

Q-1

DCT-1

+

picture
store/

predictor

Block motion estimation

search area

macro-
block

macro-
block

macro-
block

Full search:3-step search:

macro-
block

macro-
block

macro-
block

macro-
block

macro-
block

Smart cameras for smart
rooms

❚ Coordinated cameras track subject:

Ozer et al: human activity
recognition

JPEG IMAGE/
MPEG VIDEO

Uncompressed
IMAGE/VIDEO

EIGENSPACE
MATCHING

PRINCIPAL
COMPONENTS

RELATIONAL
GRAPH
MATCHING

Motion Vectors

DCT
Extracted Area

Extracted Area

Pixel Values

OBJECT DETECTIONOBJECT DETECTION

OBJECT DETECTIONOBJECT DETECTION

Our environmental video
system

❚ Ozer/Wolf:
❙ multiple Trimedia processors attached to PC;
❙ plan to introduce multiple cameras.

Real-time analysis

The multimedia processing
funnel

Data
volume

Data
abstraction

pixel processing

principal component analysis,
hidden Markov models

Edge extraction

Architectural styles for
video

❚ SIMD
❚ Heterogeneous.
❚ ISA extensions.
❚ VLIW.

SIMD processing

❚ Broadcast operation to an array of
processing elements, each of which has
its own data.

❚ Well-suited to regular, data-oriented
operations.

A block correlation
architecture

∆ ∆ ∆

∆ ∆ ∆

∆ ∆ ∆

+ + +

35 256 16

0 0 4

0 0 7

2725635318

Block motion estimation
architecture

frame A

frame B

network

network

PE 0

PE 1

PE 2

PE 15

comparator

Data flow in block motion
estimation

PE0 PE1 PE2

a(0,0)-b(0,0)

time

0

1
2

a(0,1)-b(0,1)

a(0,2)-b(0,2)

a(0,0)-b(0,1)

a(0,1)-b(0,2) a(0,0)-b(0,2)

a(1,0)-b(1,0)16

17
18

a(1,1)-b(1,1)

a(1,2)-b(1,2)

a(1,0)-b(0,1)

a(1,1)-b(0,2) a(1,0)-b(0,2)

...

...
a(0,15)-b(0,16) a(0,14)-b(0,16)

a(0,15)-b(0,17)

Hetereogeneous
multiprocessor design

❚ Will need accelerators for quite some time
to come:
❙ power;
❙ performance.

❚ Candidates for acceleration:
❙ complex coding and error correction;
❙ motion estimation.

Expensive operations

Expensive operations can be speeded up by
special-purpose units:
❙ specialized memory accesses;
❙ specialized datapath operations.

Special-purpose units may be useful for only
certain parameters:
❙ block size;
❙ search region size.

Philips MPEG2 encoder
(ISSCC ‘97)

memory interface

front end
processing

compressor
back end

processing

control ASIP

I2C bus

vi
de

o
da

ta

co
m

pr
es

se
d

da
ta

ISA extensions

Split data word into subwords to provide
single instruction multiple data (SIMD)
parallelism.

Assemble CPU word from pixels:

pixel 1 pixel 2 pixel 3 pixel 4

16 bits

64 bits

16 bits 16 bits 16 bits

Why ISA extensions

❚ Easy: provide significant parallelism with
small changes to architecture.

❚ Cheap: can be implemented with
❚ Effective: provide 2x-4x speedups.

xb

xc

Packed compare
instruction

Used for chromakey:

wa

wb

wc

wd

xa

xd

=

=

=

=

to
 p

ac
ke

d
lo

gi
ca

l o
p

logo

+

=
logo

VLIW architectures

❚ Parallel function units, shared register
file, static scheduling of operations:

register file

function
unit

function
unit

function
unit

function
unit

...

instruction decode and memory

VLIW’s popularity

❚ Invented 20 years ago, popular today:
❙ Good compiler technology.
❙ Low control overhead.
❙ Systems-on-silicon eliminates pinout

problems.

❚ Advantages for video:
❙ Embarrassing parallelism with static

scheduling opportunities.
❙ Less problem with code compatibility.

Trimedia TM-1

memory interface

video in

audio in

I2C

timers

image co-p

PCI

video out

audio out

serial

VLD co-p

VLIW CPU

Architectural experiments

❚ Fritts/Wolf:
❙ characterize applications;
❙ compare architectural styles (VLIW,

superscalar);
❙ evaluate architectural parameters (clock rate,

pipelining, etc.).

VLIW processor model

Off-chip
memory

VLIW processor

datapath

PE

PE

PE

reg
file

...

in
te

rc
on

ne
ct

io
n

ne
tw

or
k

memory
element

memory
element

memory
element

...

Workload characteristics
experiments

❚ Goal: compare media workload
characteristics to general-purpose load.

❚ Used MediaBench benchmarks.
❚ Compiled on Impact compiler, measured

with with Impact simulator.

Basic characteristics

❚ Comparison of operation frequencies with SPEC
❙ (ALU, mem, branch, shift, FP, mult) => (4, 2,

1, 1, 1, 1)
❙ Lower frequency of memory and floating-point

operations
❙ More arithmetic operations
❙ Larger variation in memory usage

❚ Basic block statistics
❙ Average of 5.5 operations per basic block
❙ Need global scheduling techniques to extract

ILP

Basic characteristics,
cont’d

❚ Static branch prediction
❙ Average of 89.5% static branch prediction on

training input
❙ Average of 85.9% static branch prediction on

evaluation input
❚ Data types and sizes

❙ Nearly 70% of all instructions require only 8
or 16 bit data types

Breakdown of data types
by media type

0%

20%

40%

60%

80%

100%

vi
de

o
im

ag
e

gr
ap

hi
cs

au
di

o
sp

ee
ch

se
cu

rit
y

de
co

de
en

co
de

av
er

ag
e

Media type

R
at

io
 o

f
da

ta
 ty

pe
s

(%
)

floating-point
pointers
word
halfword
byte

Multimedia looping
characteristics

❚ Highly loop centric
❙ 95% of CPU time in two innermost loop levels
❙ Significant processing regularity
❙ About 10 iterations per loop on average

❚ Complex loop control
❙ = average # of instructions executed per loop

invocation/total # of loop instructions
❙ Average path ratio of 78%--high complexity

Average iterations per loop
and path ratio

0

0.2

0.4

0.6

0.8

1

video image graphics audio speech security average

Media Type

P
at

h
R

at
io

1

10

100

1000

vi
de

o

im
ag

e
gr

ap
hi

cs

au
di

o

sp
ee

ch

se
cu

rit
y

m
ed

ian

Media Type

A
ve

ra
ge

 N
um

be
r

of
 I

te
ra

ti
on

- average number of
 loop iterations

- average path ratio

Instruction level
parallelism

❚ Instruction level parallelism
❙ base model: single issue using classical

optimizations only
❙ parallel model:8-issue

❚ Explores only parallel scheduling
performance
❙ assumes an ideal processor model
❙ no performance penalties from branches, cache

misses, etc.

ILP results

0

0.5

1

1.5

2

2.5

3

3.5

video image graphics audio speech security average

Media Type

S
pe

ed
up

8-issue classical only
8-issue classical w/ inlining
8-issue superblock
8-issue hyperblock

VSP architecture
evaluation

❚ Determine fundamental architecture
style
❙ Statically Scheduled => Very Long Instruction

Word (VLIW)
❙ Dynamically Scheduled => Superscalar

❚ Examine variety of architecture
parameters
❙ Fundamental Architecture Style
❙ Instruction Fetch Architecture
❙ High Frequency Effects
❙ Cache Memory Hierarchy

Fundamental architecture
evaluation

❚ Major issues:
❙ Static vs. dynamic scheduling
❙ Issue width

❚ Focused on non-memory limited
applications.

Architectural model

❚ 8-issue processor
❚ Operation latencies targeted for 500

MHz to 1 GHz
❚ 64 integer and floating-point registers
❚ Pipeline: 1 fetch, 2 decode, 1 write

back, variable execute stages

Architectural model, cont’d

❚ 32 KB direct-mapped L1 data cache
with 64 byte lines

❚ 16 KB direct-mapped L1 instruction
cache with 256 byte lines

❚ 256 KB 4-way set associate on-chip
L2 cache

❚ 4:1 Processor to external bus
frequency ratio

Static versus Dynamic
Scheduling

0

0.5

1

1.5

2

2.5

3

Classical Superscalar Hyperblock

Compilation Method

IP
C

VLIW

in-order superscalar

out-of-order superscalar

VLIW w/ perfect caches

in-order superscalar w/
perfect caches

out-of-order superscalar w/
perfect caches

Increasing issue width

0

0.5

1

1.5

2

2.5

0 5 10
Issue-Width

IP
C

VLIW

in-order
superscalar
out-of-order
superscalar

Instruction fetch
architecture

0

1

2

3

4

5

6

Classical Superscalar Hyperblock

Compilation Method

IP
C

 D
if

fe
re

nc
e

(%
) VLIW w/ fixed-

width instrs
VLIW w/ variable-
width instrs
in-order
superscalar
out-of-order
superscalar

•Unbuffered fetch vs. decoupled fetch:

Impact of higher processor
frequencies

❚ Increased wire delay at higher
frequencies may cause:
❙ Longer operation latencies
❙ Delayed bypassing

Processor frequency
models

❚ Three processor models with
different operation latencies
❙ 250 MHz – 500 MHz: stores – 1, loads –

2, FP – 3, mult – 3, div – 10
❙ 500 MHz – 1 GHz: stores – 2, loads –

3, FP – 4, mult – 5, div – 20
❙ 1 GH – 2 GHz: stores – 3, loads – 4, FP

– 5, mult – 7, div – 30

Processor frequency
results

❚ 10% performance difference between
processor models

❚ 35% performance degradation for
delayed bypassing

❚ Out-of-order scheduling and
superscalar compilation least
susceptible to high frequency effects
❙ 20-30% less performance degradation

Memory latency

0

0.2
0.4

0.6

0.8
1

1.2

1.4
1.6

1.8

25 50 100 200 400
Memory Latency (# cycles to access

64-byte line)

In
st

ru
ct

io
ns

 p
er

 C
yc

le
 (

IP
C

video

image
graphics

audio

speech
security

decode
encode

•Effect of memory latency on access to 64-byte line on L2 miss:

More susceptable to memory latency than bandwidth.

Evaluation of
cache memory hierarchy

❚ Conclusions
❙ L2 cache has little impact on performance

❘ useful for storing state during context
switches

❙ External memory miss latency is primary
memory problem

❘ Streaming data structures will help alleviate
this

❙ External memory bandwidth is second-
most problem

Loop optimizations

❚ Long-standing topic in compilers: identify
and extract parallelism.

❚ Lin/Wolf: new twists for embedded
systems:
❙ develop more unified model for searching

design space;
❙ configure main memory, cache as well as

optimize program.

Previous Work

❚ Loop transformation
❙ Banerjee, Wolfe, Wolf & Lam, McKinley, Cierniak&Li

❚ Data layout transformation
❙ Kandemir&Ramanujam, O'Boyle&Knijnenburg, Panda&Dutt, Chatterjee

❚ [Cierniak&Li] Unifying data and control transformation for
distributed shared-memory machine
❙ Stride vector: TTv = LTm

❚ [Kandemir] Improving Cache locality by a combination of loop
and data transformation
❙ Consider the fastest changing dimension
❙ Search for the transformation matrix

Affine Representation

for i = 2, n

 for j = 2, n

 y[i,j]=0.5*(x[i-1,j-1]+x[i-1,j])

end (1)

i

j

2 3 4

2

3

4

5

cIA
j

i

j

i
+=







 −
+
















=







 − r

0

1

10

011
(1)

() ()]1,0[],0,1[, 21 =ee
rr

Two-dimension loop nest:

N-dimension loop nest:),...,,(21 Neee
rrr

Non-singular loop transformation: T

A: Reference Matrix

Varieties of Transformations

❚ Loop transformation:
❙ Affect all array references in the transformed loop nest
❙ Do not affect references in other loop nest
❙ Data dependence vectors will change after transformation

❚ Data layout transformation:
❙ Affect all references to the transformed array in the program
❙ Do not affect references to other arrays, whether inside or not

inside the same loop
❙ Do not affect data dependence relationships

Data access locality

❚ Aspects of locality:
❙ Spatially close: Elements of the fastest changing

dimension of array
❙ Temporarily close: Iterations of the innermost loops

❚ Can improve performance by putting local
accesses in adjacent locations:

A[0,0]

A[1,0]

A[2,0]

A[3,0]

...

...

...

A[0,0]
A[1,0]
A[2,0]
A[3,0]

A[0,0] A[1,0] A[2,0] A[3,0]

Our Work

❚ The starting point
❙ Locality space instead of innermost loop
❙ Integrated cache configuration and data locality optimization
❙ Constructing the legal transformation matrix
❙ Unified loop and data layout transformation

❚ Other initiatives
❙ Dimensionality of the locality space and reuse vector space
❙ Individual statement instead of loop body as the atomic unit of

the iteration space
❙ Locality space for arrays

Locality Space

❚ Locality space is defined by the m
innermost loops.
❙ Dimensionality of the locality space m is determined by the

cache configuration and the number of iterations in the
innermost loops.

❙ Data locality optimization is to maximize the data reuse in the
locality space.

❙ Each level of memory hierarchy corresponds to one level of
locality space si with (H : level of the
memory hierarchy)

❚ Cache configuration and data locality optimization are
integrated with the concept of locality space

),...,,span(11 −−− mNNN eee
rrr

Hsss ⊂⊂⊂ L21

Compacting the Reuse Distance

❚ Compacting the Reuse Distance:
❙ For a reuse vector that is not in the locality space, i.e.

 , a non-singular transformation T
can be applied s.t.

❚ For a set of reuse vectors:
❙ The dimensionality of the reuse vector space
❙ Choosing among reuse vectors for better locality: reuse

quality, legal transformation

❚ Constructing legal transformation matrix
❚ To capture more reuse

❙ Reducing the dimensionality of the reuse vector space
❙ Increasing the dimensionality of the locality space

r
r

),...,,span(11 −−−∉ mNNN eeer
rrrr

),...,,span(11 −−−∈ mNNN eeerT
rrrr

Reducing the Dimensionality of the
Reuse Vector Space

for i = 2, n

 for j = 2, n

 x[i,j]=x[i,j]-128 (S1)
 y[i,j]=0.5*(x[i-1,j-1]+x[i-1,j]) (S2)
 z[i,j]=x[i,j-1] (S3)
end

i

j

2 3 4

2

3

4

5

S3 S2 S1

i

j

2 3 4

2

3

4

51

❚ Before loop alignment
 Spatial reuse (not shown in the figure):

[0, 1]: S1→S1, [0, 1]: S2→S2, [0, 1]: S3→S3
 Temporal reuse

[1, 0]: S1→S2, [1, 1]: S1→S2, [0, 1]: S1→S3

❚ After loop alignment [−1, 0]: S2
 Spatial reuse (not shown in the figure):

[0, 1]: S1→S1, [0, 1]: S2→S2, [0, 1]: S3→S3
 Temporal reuse

[0, 0]: S1→S2, [0, 1]: S1→S2, [0, 1]: S1→S3

Reducing the Dimensionality of the
Reuse Vector Space (cont’d)
for i = 1, n

 for j = 2, n

 if i=1 then

 y[2,j]=0.5*(x[1,j-1]+x[1,j])

 else if i=n then

 x[n,j]=x[n,j]-128

 z[n,j]=x[n,j-1]

 else

 x[i,j]=x[i,j]-128

 y[i+1,j]=0.5*(x[i,j-1]+x[i,j])

 z[i,j]=x[i,j-1]

 endif

end

❚ Minimizing the Dimensionality of the Reuse Vector
Space

Increasing the Dimensionality of
the Locality Space

❚ Loop tiling increases dimensionality of locality space.
❚ Change the cache configuration:

❙ Increasing the cache size
❙ Reducing the line size if the program does not have good

spatial locality

❚ The procedure:
Loop alignment → non-singular transformation → loop tiling and

cache configuration adjustment

More Spatial Reuse with Non-
singular Transformation for Array
Layout

❚ Locality space for arrays:
span() span()

! () : the last m columns of the reference
matrix A (or AT −1 with affine loop transformation T).

! Let S = span(): locality space for the array

❚ Creating spatial reuse
❙ If the fastest changing dimension of an array is not in its

locality space, i.e. , a non-singular transformation TA
can be applied to the array layout s.t.

❚ Dimension interchange:

11 ,...,, −−− mNNN eee
rrr

11 ,...,, −−− mNNN aaa
rrr

 → + cIA
r

11 ,...,, −−− mNNN aaa
rrr

11 ,...,, −−− mNNN aaa
rrr

{ } φ≠Seee A I
rrr

,...,, 21

Se f ∉
r

STe Af ∈
r

In-dimension Stride Vector

❚ In-dimension Stride Vector (ISV)
♦ Distance vector between two iterations that access adjacent

data within the same dimension of an array

❚ Why ISV?
❙ Each dimension of the array has its own ISV
❙ If the dimension is switched to be the fastest changing

dimension, its ISV becomes the self-spatial reuse vector
❙ Automate the unification of loop transformation and array

dimension interchange

❚ How to compute ISV:)ker()ker(ISV AAjj −=

An Example

for i = 1, N
for j = 1, N
 for k = 1, N
 c(i,j) = c(i,j) + a(i,k)*b(k,j)

end

ISV spaces:
Array c: 1st ISV space: span{(1, 0, 0)}, 2nd ISV space: span{(0, 1, 0)}
Array a: 1st ISV space: span{(1, 0, 0)}, 2nd ISV space: span{(0, 0, 1)}
Array b: 1st ISV space: span{(0, 0, 1)}, 2nd ISV space: span{(0, 1, 0)}

One possible transformation: Assuming row major, T : (1, 0, 0) ⇒ (0, 0, 1)
for l = 1, N

for m = 1, N
 for n = 1, N
 c(m,n) = c(m,n) + a(l,n)*b(m,l)

end

Spatial
locality

Temporal
locality

Experimental Result (Matrix
Multiplication)

0

0.1

0.2

0.3

Cfg1 Cfg2 Cfg3 Cfg4

Pre-optimization

Tiling

Optimized

Cfg1: n=128, l=8, a=1, Cfg2: n=128, l=8, a=2
Cfg3: n=256, l=8, a=1, Cfg4: n=256, l=8, a=2

n : number of line sets, l : line size in words
a : degree of associativity

Figure: Miss rate for Matrix Multiplication

Multiprocessor
architectures for video

❚ One VLIW is not a good idea:
❙ limited ability to extract parallelism from one

process;
❙ multiple processes are not easily described

for instruction-level scheduling;
❙ applications have natural decomposition.

❚ Symmetric multiprocessor is bad:
❙ don’t want all shared memory space;
❙ longer wires lead to more power.

Smart camera CPU times

0 5 10 15 20 25 30 35 40 45
26.5

27

27.5

28

28.5

29

29.5

Frame number

P
ro

ce
ss

in
g

tim
e

(m
se

c)

Skin Detection

0 5 10 15 20 25 30 35 40 45
65.6

65.8

66

66.2

66.4

66.6

66.8

67

67.2

Frame number

P
ro

ce
ss

in
g

tim
e

(m
se

c)

Contour Following

Skin detection Contour detection

67.2 ms29.5 ms

Smart camera CPU times,
cont’d.

0 5 10 15 20 25 30 35 40 45
50

100

150

200

250

300

350

Frame number

P
ro

ce
ss

in
g

tim
e

(m
se

c)

Superellipse Fitting

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

Frame number

P
ro

ce
ss

in
g

tim
e

(m
se

c)

Graph Matching

Superellipse fitting Graph matching

35 ms250 ms

Observations on smart
camera application

❚ Feed-forward communication.
❚ Somewhat unbalanced process-process

CPU times.
❚ Significant variation in frame-to-frame

CPU time.

Problems with uniform
shared memory

❚ Conflicts cause
scheduling problems.

❚ Statically-scheduled
compiler has problems
with:
❙ depth of scheduling;
❙ non-deterministic

conflicts.
in

te
rc

on
ne

ct
io

n
ne

tw
or

k

memory
element

memory
element

memory
element

...

Local shared memories

❚ Use locally shared
memories to provide
more predictable
computation times.

❚ Provide API for
interprocess
communication.

PE 1 PE 2Shared
memory

mem mem

Heterogeneous
architectures

❚ Different phases have very different
characteristics:
❙ pixel-oriented;
❙ line-oriented;
❙ floating-point parameter matching.

❚ Different processing elements can be used
for different stages.

Summary

❚ Multimedia applications are already more
complex and will become more so:
❙ multiple algorithms;
❙ complex control and data.

❚ Instruction-level parallelism helps, but
isn’t enough to handle complex
applications.

