

New architectures: AP-MPSoC

- scalable, highly parallel, programmable, energy-efficient
- application-specific processor node running with low frequency
- application-specific communication network

Wireless baseband algorithms

- Inner modem
 - signal processing based on matrix computations e.g. multi-user detection, interference cancellation, filtering, correlators
 - many publications on efficient multi-processor implementations of matrix computations e.g. systolic arrays
- Outer Modem
 - ⇒ Channel coding, Interleaving, Data stream segmentation
 - ⇒ efficient multi-processor implementation largely unexplored

Channel Coding Techniques

- Convolutional Codes
 - ⇒ Viterbi decoding algorithm
 - intensively studied (HW/SW/DSP_extensions)
- Most efficient Codes: Turbo-Codes (1993), LDPC-Codes (1996)
 - ⇒ block-based
 - ⇒ iterative decoding techniques
 - ⇒ computational complexity increased by order of magnitude
 - ⇒ memory access and data transfers are very critical
- Turbo-Codes
 - one of the big changes when moving from 2G to 3G
 - part of many emerging standards e.g. WLAN, 4G
 - ⇒ Turbo-principle extended to modulation
- Very active research area in the communication community

Mapping of this type of algorithms onto programmable architectures largely unexplored

Turbo-Codes

- Iterative decoding process
 - ⇒ block-based 3GPP: 20-5114 bits, 3GPP2: 378-20730 bits
 - DEC1, Interleaving, DEC2, Deinterleaving
 - ⇒ interleaved reliability information is exchanged between decoders
- Softoutput Decoder
 - determine Log-Likelihood Ratio (LLR) of each bit being sent "0" or "1" (Viterbi determines only most likely path in trellis)
 - ⇒ three step algorithm: forward/backward recursion, LLR calculation
 - ⇒ ~2.5 x computational complexity of Viterbi algorithm
 - ⇒ memory complexity (size,access) >> Viterbi algorithm
- Interleaving/Deinterleaving
 - ⇒ important step on the physical layer
 - scrambles data processing order to yield timing diversity
 - ⇒ minimizes burst errors

9

Implementation Challenges

- Programmability and Flexibility
 -It is critical for next generation programmable DSP to adress the requirements of algorithms such as Turbo-Codes since these algorithms are essential for improved 2G and 3G wireless communication"
 - (I. Verbauwhede "DSP's for wireless communications")
- High throughput requirements
 - UMTS: 2 Mbit/s (terminal), >10Mbit/s (basestation)
 - ⇒ emerging standards >100 Mbit/s
- DSP performance (UMTS compliant based on Log-MAP algorithm)

Processor	Architecture	Clock freq. [MHz]	cycles/ (bit*MAP)	Throughput @ 5 Iter.
MOT 56603	16-bit DSP	80	472	17 kbit/s
STM ST120	VLIW, 2 ALU	200	100	~ 200 kbit/s
SC140	VLIW, 4 ALU	300	50	600 kbit/s
ADI TS (1)	VLIW, 2 ALU	180	27	666 kbit/s

(1) With special ACS-instruction support

Interleaver Bottleneck

O Data from **N** sources have to be "perfectly randomly" distributed

BIT	P _I	Interl. position	P _I	
1	1	3	1	۱,
2	1	6	2	١,
3	1	5	2	
4	2	2	1	٠
5	2	4	2	١,
6	2	1	1	

- ⇒ Average : P_i sends & receives same amount of values/cycle
- ⇒ Peak : P_i can receive up to N-1 more values than average value

Crossbar functionality, but with output blocking conflict

13

Interleaving Network Requirements

- Flexibility and Scalability
 - ⇒ Interleaver scheme can change from decoding block to block
 - ⇒ e.g. ~ 5000 different interleaver tables in UMTS
 - ⇒ Different throughput requirements
- Global data distribution
 - ⇒ Good interleavers imply no locality
- 0-latency penalty
 - data distribution should be completely done in parallel to data calculation
- O Write conflicts i.e. different PEs write simultanously onto same target PE
 - ⇒ multi-port memories infeasable
 - conflict-free interleaver design (e.g. IMEC approach), but lack of flexibility

Application Specific Processing Node

- O Increased ILP by Tensilica Xtensa RISC core for MAP calculation
 - double add-compare-select operation (butterfly)

$$\begin{array}{ll} \alpha_{k}(2n) &= \max^{\star} \left(\alpha_{k-1}(n) + \varLambda i n_{k}(I), \ \alpha_{k-1}(n+M/2) + \varLambda i n_{k}(II)\right) \\ \alpha_{k}(2n+1) &= \max^{\star} \left(\alpha_{k-1}(n) + \varLambda i n_{k}(II), \ \alpha_{k-1}(n+M/2) + \varLambda i n_{k}(I)\right) \end{array}$$

⇒ max* operation

$$max^*(x_1,\ x_2) = max\ (x_1,\ x_2) + ln(1 + exp(-|\ x_2 - x_1\ |))$$

- zero overhead data-transfers: memory operations parallel to butterfly operation
- 1.54mm² (0.18um techology), f=133 MHz

Processor	Clock freq. [MHz]	cycles/ (bit*MAP)	Throughput @ 5 Iter.
Xtensa	133	9	1,4 Mbit/s
STM ST120	200	100	~ 200 kbit/s
SC140	300	50	600 kbit/s
ADI TS	180	27	666 kbit/s

Necessary and sufficient conditions such that the throughput of the communication network does not degrade the AP-MPSoC throughput i.e. data distribution is completely done in parallel to computation

: Interleaver size
C : Number of Clusters

 $N_{\mathbb{C}}$: Nodes per Cluster N: Total Nodes

R : Data production rate Perfect interleaver: P_{node_acess} = 1/N

 $\text{Internal Cluster traffic} \qquad N_C * \frac{1}{C} * \frac{K}{N} = \frac{1}{C^2} * K$

Traffic from/to cluster $N_C * \frac{C-1}{C} * \frac{K}{N} = \frac{C-1}{C^2} * K$

Cluster traffic must be completed within data calulation

$$\frac{1}{C^2} * K + 2 * \frac{C - 1}{C^2} * K \le R * \frac{K}{N}$$

Network Analysis

O Traffic on the cluster bus determines number of nodes per cluster

$$N_C \le R \cdot \frac{C}{2 \cdot C - 1} \implies N_C \approx \frac{1}{2}R$$

- Scheduling Scheme:
 - \Rightarrow Grant_{nodes} = C/(2C
 - \Rightarrow Grant_{bus_switch} = 1-C/(2C-1)
- O Traffic on ring-network ("nearest neighbour routing")

Traffic_{RIBB-Link} =
$$\sum_{i=0}^{\frac{c}{2}-1} \frac{1}{2} \frac{C-1}{C^2} \cdot K - i \cdot \frac{K}{C^2} = \frac{1}{8} K$$

Traffic must be completed within data calulation

$$\frac{1}{8} * \mathbf{K} \le \mathbf{R} * \frac{\mathbf{K}}{\mathbf{N}}$$

21

Network Analysis

O Traffic on ring network determines total number of nodes

$$N \leq 8 * R$$

- Worst case RIBB capacity limit: R_{max}=1 N=8
 - ⇒ Extended RIBB to chordal ring
 N=22
 - ⇒ Synthesis based results (0,18 um technology), UMTS conditions, average values

N	Buff _{left}	Buff* _{local}	Buff _{right}	Buff _{chord}	RIBB [mm²]	
4	4	34	4	-	0.16	
6	6	29	7	-	0.14	
8	17	19	17	-	0.21	
16	17	16	15	4	0.25	

* Buffer has different bitwidth

Results

Synthesis-based, 0.18um technology, UMTS compliant (K=5114, 5 iterations), $\rm t_{cycle}$ =7.5ns, R=5, $\rm R_{LLR}$ =9

Total Nodes (N)	# of Clusters (C)	Cluster Nodes (N _C)	Throughp.* [Mbit/s]	Area Comm. [mm²]	Area Total [mm²]	Efficiency [Mb/s*mm ²]
1	1	1	1.48	NA	6.42	1
5	1	5	7.28	0.21	14.45	2.19
6	2	3	8.72	0.66	16.73	2.26
8	4	2	11.58	1.25	20.91	2.40
12	6	2	17.18	2.02	28.92	2.58
16	8	2	22.64	2.88	36.98	2.66
32	16	2	43.25	7.29	70.26	2.67
40	20	2	52.83	10.05	87.47	2.62

^{*} Validated with Tensilica Xtensa API Interface, Tensilica ISS simulator

- O Architecture efficiency increases with increasing parallelism
 - ⇒ memory dominated application
 - ⇒ application memory (interleaver, I/O data memories) size is constant
 - ⇒ communication network overhead < 10%

Results dedicated Implementation

- VHDL-Model of fully parameterizable scalable Turbo-Decoder
 - ⇒ Log-MAP / Max-Log-MAP
 - ⇒ Window- and Acquisition-Length

 - ⇒ Number of SMAP Units
- Synthesis and Power-Characterization with Synopsys Design Compiler on a 0.18 μm Standard Cell Library
- Validated in UMTS environment
- 166 MHz Log-MAP Implementation with 6 Turbo Iterations

Parallel SMAP Units N _D	1	4	6	6	6	8	8
Parallel I/O N _{IO}	1	1	1	2	con. I/O	1	2
Total Area [mm ²]	3.9	9.2	13.3	13.0	18.0	15.9	17.3
Fraction of Memory	85%	69%	69%	68%	77%	61%	64%
Energy per Block [mJ]	48.7	51.7	55.2	50.9	55.2	57.6	55.2
Throughput [MBit/s]	11.7	39.0	50.6	59.6	72.6	59.7	72.7
Efficiency (norm.)	1.00	1.32	1.12	1.47	1.19	1.05	1.24

25

1

Dedicated Solution, VS

- Area, throughput, and energy per decoded block (166 MHz clock frequency, 6 iterations)
- O Different degrees of parallelization (N_D and N_{IO}) and different supply voltages (V_{dd})

Conclusion

- O Channel coding is key for efficient wireless communication
 - □ Interleaving is a bottleneck for high-throughput iterativ block-based decoding/modulation algorithms
- AP-MPSoC for channel coding
 - parallelization on sub-block level for distributed computing
 - ⇒ scalable from 1.5 to 52 Mbit/s
 - synthesis-based design methodology
 - ⇒ application specific processing node
 - increased instruction level parallelism by XTENSA RISC core
- Application specific network for interleaving
 - network also applicable to LDPC-codes
 - allows scalable high-throughput architectures (dedicated and programmable) for emerging channel coding techniques
- Low Power
 - Switch –off processing units dependent on throughput
 - ⇒ (D)VS

27

Thank you for listening!

For further information please visit

http://www.eit.uni-kl.de/wehn

You can download papers describing the techniques presented in this talk

Special thanks to my PhD students

Frank Gilbert, Gerd Kreiselmaier, Michael Thul, Timo Vogt