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Wireless Implementation Challenges I

DECT 10 MIPS, GSM 100 MIPS, UMTS x 1000 MIPS
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Wireless Implementation Challenges II

Algorithmic Complexity

“Shannon‘s Law beats Moore‘s Law”

Programmability and Flexibility

different QoS 

„multi-mode“ support: different algorithms & standards

„software radio“

different throughput requirements

Low Power/Low Energy

BUT: „Energy-Flexibility Gap“

Design Space

algorithms, architecture

….
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Motivation

New architectures: AP-MPSoC

scalable, highly parallel, programmable, energy-efficient

application-specific processor node running with low frequency

application-specific communication network

Wireless baseband algorithms

Inner modem

signal processing based on matrix computations e.g. multi-user 
detection, interference cancellation, filtering, correlators

many publications on efficient multi-processor implementations 
of matrix computations e.g. systolic arrays

Outer Modem

Channel coding, Interleaving, Data stream segmentation

efficient multi-processor implementation largely unexplored
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Importance of Channel Coding

Efficient channel coding is key for reliable communication 

High throughput: complexity is in data distribution and not in computation



4

7

MPSoC’03
N. Wehn

Channel Coding Techniques

Convolutional Codes
Viterbi decoding algorithm
intensively studied  (HW/SW/DSP_extensions)

Most efficient Codes: Turbo-Codes (1993), LDPC-Codes (1996)
block-based
iterative decoding techniques
computational complexity increased by order of magnitude
memory access and data transfers are very critical

Turbo-Codes
one of the big changes when moving from 2G to 3G
part of many emerging standards e.g. WLAN, 4G 
Turbo-principle extended to modulation

Very active research area in the communication community

Mapping of this type of algorithms onto programmable architectures largely 
unexplored
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Turbo-En/Decoder Structure
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Iterative decoding process
block-based 3GPP: 20-5114 bits, 3GPP2: 378-20730 bits
DEC1, Interleaving, DEC2, Deinterleaving
interleaved reliability information is exchanged between decoders

Softoutput Decoder
determine Log-Likelihood Ratio (LLR) of each bit being sent „0“ or „1“ 
(Viterbi determines only most likely path in trellis)
three step algorithm: forward/backward recursion, LLR calculation
~2.5 x computational complexity of Viterbi algorithm
memory complexity (size,access) >> Viterbi algorithm

Interleaving/Deinterleaving
important step on the physical layer
scrambles data processing order to yield timing diversity
minimizes burst errors

Turbo-Codes
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Implementation Challenges

Programmability and Flexibility
„...It is critical for next generation programmable DSP to adress the 
requirements of algorithms such as Turbo-Codes since these algorithms are 
essential for improved 2G and 3G wireless communication“
(I. Verbauwhede „DSP‘s for wireless communications“)

High throughput requirements
UMTS: 2 Mbit/s (terminal), >10Mbit/s (basestation)
emerging standards >100 Mbit/s

DSP performance (UMTS compliant based on Log-MAP algorithm)

17 kbit/s4728016-bit DSPMOT 56603

666 kbit/s27180VLIW, 2 ALUADI TS (1)

600 kbit/s50300VLIW, 4 ALUSC140

~ 200 kbit/s100200VLIW, 2 ALUSTM ST120

Throughput
@ 5 Iter.

cycles/
(bit*MAP)

Clock freq. 
[MHz]ArchitectureProcessor

(1) With special ACS-instruction support
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Multiprocessor Solution (Block Level)

Multiprocessor solution becomes mandatory

MAP-
Decoder

MAP-
Decoder

Interleaver/
Deinterleaver

Interleaver/
Deinterleaver

Single Processor

Sequential processing of
MAP algorithm
two MAP component decoders
Interleaving and Deinterleaving

MAP-
Decoder

MAP-
Decoder

Interleaver/
Deinterleav

Interleaver/
Deinterleav

...............

MAP-
Decoder

MAP-
Decoder

Interleaver/
Deinterleav

Interleaver/
Deinterleav

MAP-
Decoder

MAP-
Decoder

Interleaver/
Deinterleav

Interleaver/
Deinterleav

N blocks are processed
Large latency
Low architectural efficiency

large area (memory!)
high energy

Simple MP solution

P1

P2

PN

12

MPSoC’03
N. Wehn

Optimized MPSoC (Sub-Block Level)

Better solution: parallelization on algorithmic level (sub-block level)

MAP decoder parallelization (exploiting trellis windowing technique)
each processor can execute a sub-block of of the complete block independently
slight increase in computational complexity due to acquisition phase
allows distributed computing

Iterative exchange of interleaved information yields only limited locality

P1
Subblock 1

P1
Subblock 1

Interleaver/
Deinterleaver

Network

Interleaver/
Deinterleaver

Network

P2
Subblock 2

P2
Subblock 2

PN
Subblock N

PN
Subblock N

Low Latency (decreases with N)
Large architectural efficiency
Computational locality but
network-centric architecture

write

read
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Interleaver Bottleneck

1

2
1
2
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PI

126
425
224
513
612
311

Interl.
position

PIBIT

M1

M2P2

Interleaving
Network

Crossbar functionality, but with output blocking conflict

P1

1,2,3

4,5,6

Average : Pi sends & receives same amount of values/cycle
Peak : Pi can receive up to N-1 more values than average value 

Data from N sources have to be „perfectly randomly“ distributed
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Interleaving Network Requirements

Flexibility and Scalability
Interleaver scheme can change from decoding block to block
e.g. ~ 5000 different interleaver tables in UMTS
Different throughput requirements

Global data distribution
Good interleavers imply no locality

0-latency penalty 
data distribution should be completely done in parallel to data 
calculation

Write conflicts i.e. different PEs write simultanously onto same target PE
multi-port memories infeasable
conflict-free interleaver design (e.g. IMEC approach), but lack of 
flexibility
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Application Specific Processing Node

Increased ILP by Tensilica Xtensa RISC core for MAP calculation
double add-compare-select operation (butterfly)

max* operation

zero overhead data-transfers: memory operations parallel to butterfly 
operation

1.54mm2 (0.18um techology), f=133 MHz

αk(2n) = max* (αk-1(n) + Λink(I), αk-1(n+M/2) + Λink(II))
αk(2n+1) = max* (αk-1(n) + Λink(II), αk-1(n+M/2) + Λink(I))

max*(x1, x2) = max (x1, x2) + ln(1+exp(-| x2-x1 |))

1,4 Mbit/s9133Xtensa

666 kbit/s27180ADI TS

600 kbit/s50300SC140

~ 200 kbit/s100200STM ST120

Throughput
@ 5 Iter.

cycles/
(bit*MAP)

Clock freq. 
[MHz]Processor
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Processing Node Interface

Fast single-cycle local data memory MC

mapped into processors adress space
XLMI single-cycle data interface for interprocessor communication
Communication device for data distribution

message passing network (message=data + target addr.)
single cycle access

MC

CP
U

 B
us

Cluster Bus

CPU-Core (Xtensa)

XL
M

I

PI
FCore

Comm.
Dev.

I/O

MP

32

16

32

Data Data

Addr.

Addr.
Sel 0
Sel 1

S
R

Buffer
0

Buffer
1

Bus
Interface

X
L
M
I

FIFO

CPU-Address-Space Custom-Hardware

Cluster Bus

3232

16Data

Addr.

16

16

Message format 0 0Node ID target

Processor (7bit)
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buffer (14bit)
Buffer ID 

(1bit) Data (8bit)
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Network Structure

K number of bits in a decoding block (e.g. 5114) 
N number of processing nodes

each node processes K/N bits

R average number of cycles per calculated data on a node processor

Complete block processing needs R*K/N cycles

Throughput requirement on communication network N / R

N/R ≤ 1 simple bus architecture sufficient

PN-1P1P0

Cluster Bus

Comm
Dev.

Comm
Dev.

Comm
Dev.

Bus
Switch
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Heterogeneous Network

Bus: limited scalability and throughput e.g. UMTS conditions 
Nmax=5
max throughput ~ 7 Mbit/s

Hierarchical network composed of clusters
ring topology 
point-to-point connection between RIBB cells

RIBB cell
crossbar switch

Maximized locality
minimized global routing
only neighbouring routing
scalable to a large extend 
allows synthesis-based design
methodology
does not limit tcycle

P1

P0

P3

P4

P5

P6

P2

P7

RIBB0

RIBB1

RIBB2

RIBB3

NC=2 :Nodes per Cluster
C=4 :Number of Clusters
N=8 :Total Nodes (N = C ⋅ NC)
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Data distributor
routing decision unit
determines target buffer
nearest neighbour routing

Buffer (FIFO)
multiple data in
single data out
buffer sizes determined by
simulation at design time

Throughput
1 message / cycle per Link

Low complexity cell
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Network Analysis

Necessary and sufficient conditions such that the throughput of the communi-
cation network does not degrade the AP-MPSoC throughput  i.e. data distri-
bution is completely done in parallel to computation

K : Interleaver size C : Number of Clusters 
NC : Nodes per Cluster N : Total Nodes
R : Data production rate Perfect interleaver: Pnode_acess = 1/N

Internal Cluster traffic

Traffic from/to cluster

Cluster traffic must be completed within data calulation

K
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Traffic on the cluster bus determines number of nodes per cluster

Scheduling Scheme:
Grantnodes = C/(2C-1)
Grantbus_switch = 1-C/(2C-1)

Traffic on ring-network („nearest neighbour routing“)

Traffic must be completed within data calulation

Network Analysis
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Traffic on ring network determines total number of nodes

Worst case RIBB capacity limit: Rmax=1 N=8
Extended RIBB to chordal ring N=22
Synthesis based results (0,18 um technology), UMTS conditions, 
average values

Network Analysis
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Results

Synthesis-based, 0.18um technology, UMTS compliant (K=5114, 5 iterations),
tcycle =7.5ns, R=5, RLLR=9

Total 
Nodes 

(N)

# of 
Clusters 

(C)

Cluster 
Nodes 
(NC)

Throughp.* 
[Mbit/s]

Area 
Comm. 
[mm2]

Area Total 
[mm2]

Efficiency 
[Mb/s*mm 2]

1 1 1 1.48 NA 6.42 1
5 1 5 7.28 0.21 14.45 2.19
6 2 3 8.72 0.66 16.73 2.26
8 4 2 11.58 1.25 20.91 2.40

12 6 2 17.18 2.02 28.92 2.58
16 8 2 22.64 2.88 36.98 2.66
32 16 2 43.25 7.29 70.26 2.67
40 20 2 52.83 10.05 87.47 2.62

Architecture efficiency increases with increasing parallelism
memory dominated application 
application memory (interleaver, I/O data memories) size is constant
communication network overhead < 10%

* Validated with Tensilica Xtensa API Interface, Tensilica ISS simulator
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Results

Comparison block level versus sub-block level parallelism
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Parallelization on Block Level

Parallelization on Sub-Block Level

Sub-block level parallelism
architecture efficiency superior
latency much shorter (decreased  ~ N)
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Results dedicated Implementation

VHDL-Model of fully parameterizable scalable Turbo-Decoder
Log-MAP / Max-Log-MAP
Window- and Acquisition-Length
Maximum Blocklength
Number of SMAP Units

Synthesis and Power-Characterization with Synopsys Design 
Compiler on a 0.18 µm Standard Cell Library
Validated in UMTS environment
166 MHz Log-MAP Implementation with 6 Turbo Iterations

Parallel SMAP Units ND 1 4 6 6 6 8 8
Parallel I/O NIO 1 1 1 2 con. I/O 1 2

Total Area [mm2] 3.9 9.2 13.3 13.0 18.0 15.9 17.3
Fraction of Memory 85% 69% 69% 68% 77% 61% 64%
Energy per Block [mJ] 48.7 51.7 55.2 50.9 55.2 57.6 55.2
Throughput [MBit/s] 11.7 39.0 50.6 59.6 72.6 59.7 72.7
Efficiency (norm.) 1.00 1.32 1.12 1.47 1.19 1.05 1.24
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Dedicated Solution, VS

Area, throughput, and energy per decoded block (166 MHz clock 
frequency, 6 iterations)
Different degrees of parallelization (ND and NIO) and different 
supply voltages (Vdd )
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Conclusion

Channel coding is key for efficient wireless communication
Interleaving is a bottleneck for high-throughput iterativ block-based 
decoding/modulation algorithms 

AP-MPSoC for channel coding
parallelization on sub-block level for distributed computing
scalable from 1.5 to 52 Mbit/s
synthesis-based design methodology
application specific processing node 
increased instruction level parallelism by XTENSA RISC core

Application specific network for interleaving
network also applicable to LDPC-codes
allows scalable high-throughput architectures (dedicated and 
programmable) for emerging channel coding techniques

Low Power
Switch –off processing units dependent on throughput
(D)VS
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Thank you for listening!

For further information please visit

http://www.eit.uni-kl.de/wehn
You can download papers describing the 

techniques presented in this talk

Special thanks to my PhD students

Frank Gilbert, Gerd Kreiselmaier, Michael Thul, Timo Vogt


