MPSoC - System Architecture
ARM Multiprocessing

John Goodacre

Program Manager
Multiprocessing

ARM Ltd. U.K.

o T

Balancing the need for Parallelism

More bits to more places
Signal processing instructions
SIMD, MOVE™ media instructions
Multi-layer bus architectures
More instructions per cycle
Deeper pipelines C@p)/c

Processing

Superscalar, VLIW

More algorithms at once
Coprocessors, accelerators

More applications -
Multiple processors Processing

keyboard input

A b a
y i T 4 .40

Where to best address parallelism

; A 8 1
) c
= ©
: O
Z ‘Optimal’ support for .
z both ILP and TLP brings the %
] most performance for
§ the least cost / effort ‘/E
: o
Effort / Cost for ILP ® Effort / Cost for TLP (SMI
Expensive on hardware
Expensive on hardware to and software to continue to
continue to attempt to attempt to share work
extract instruction level between more instances of
parallelism (ILP) ILP TLP thread level parallelism
W N (TLP)
P

S 0

Dual Core PrimeXsys ™ Platform (DCP)

M Targeted at ‘partitioned system’ designs
— Channel processor + applications processor

— Inter-processor communication mailbox
— Debug cross trigger and trace multlplexmg

M Licensable product
— Includes model using
ARM Integrator™ CP
— Cores running VxWorks
— Integrated ARM
RealView® debug
® Market Targets

— SOHO switches/routers,
Wireless AP, auto-powertrain

f W] V| —
. N DRV e

DCP Virtual Component

Trace Port Analyser Expansion

UART UARTSs x2
= () =
Serial Port
Cross: Cross-Trigger Cross:
Controll . - .
ontrofer 4LTrigger IIFF[Matrix H Trigger IIF Jﬁ Watchdog

Core 0 APB Core 1 APB

Shared APB DMA APB

Core 0 AHB/APB Core 0 Processor Core 1 AHB/APB
Vectored Bridge Comms. Bridge
Interrupt ARM946E-S Unit ARM946E-S (

Controller
Addr Remap

AHB/APB AHB/APB
Bridge Bridge

Core 1

Vectored Core 1 AHB
Interrupt

Controller

Technology Foundation

Core 0 AHB

Core 1 AHB Synch-

n ronous

Multi-Port Expanzlonl07AHE Static
Memory Expansion 1 AHB

Memory
Controller Expansion 2 AHB Controller

ARM PrimeXsys DMA
Dual Core Platform Controller
Virtual Component

Creating an MP Ecosystem

ARM RealView Tools
Multicore support; ARM plus DSP; ARM plus ARM
Debug and Trace, Multi-ICE®

AMBA™
Multi-layer AHB for multi-master system design
AMBA design kit including various SoC blocks
PrimeCell® Peripheral library
AXI (new bus protocol) for high speed

Software
Architecture optimized middleware and libraries

Platform based design

PrimeXsys

A b a
Y i Y 9 .48

Assessing MP (Software Viewpoint)

Two main models in considering an MP design
Asymmetric operation (AMP)

‘Static’ task allocation
Distributed or common view of memory

Synchronization and communication via explicit message passing
mechanism

Either homogeneous or heterogeneous CPUs
Manual allocation of work-items within definition of a SoC design

Symmetric operation (SMP)
‘Dynamic’ task allocation
Shared view of memory
Synchronization and communication via shared state in memory
Normally homogeneous CPU arrangement

Automatic allocation of work-items within an abstract definition of
the SoC design

Both models are well understood and supported

9.1V
Y : ¥ "4 < B B T e

ARM Multiprocessing

Hybrid Symmetry Model
Support for both SMP and AMP software models
Bringing application portability and flexibility
Consideration for homogeneous and

heterogeneous designs
Sponsoring a program with DSP vendors to ensure
suitability of formalized standards
Architectural Partner reviews for homogeneous MP

An ecosystem problem
Debug / trace / tools / etc
A program of working with the ARM Partnership
Silicon manufactures and 3™ party IP providers
Operating system vendors
Device and software manufactures
' W a1 V|

Y i Y 9 .48 B

Outline of what makes an MP Core

Can identify itself as MP capable
Has a CPUID to uniquely identify CPU to software
Ability to indicate need to make memory coherent

Can maintain memory coherency

Caches can participate in a MESI protocol
Physical tagged cache (VA to PA translation)

Provides a consistent view of memory
With a defined memory ordering
Atomic and synchronization primitives (SWP etc)

Communication with peer processors

Inter-Processor Interrupts (IPI)

Message Passing
A I'abh & -
Y i Y 4 .48

ARM MP Core Identification

The ARM architecture defines registers within its
coprocessor interface (CP15)

For discovering the type of processor and capability

For identification of a specific processor in a chip-
multiprocessor (CMP)

For controlling of aspects of MP behaviour
The MP system definition also addresses

How heterogeneous cores can identify themselves
within a ARM core-based design

How a platform can understand the interaction of a
MP processing core

How multiple cores can share SoC services
Such as JTAG for debug and trace

A b a
Y i Y 9 .48

Need for Coherency

B MPSoC enables SMP to
consider designs with a
centralize coherency unit

— Arbitrating access to
common memory

— Supports features such
as Direct Data

Intervention (DDI)
« Unifies L1 between CPU P1/2/3 MP capable cores
 Common L2 system MO/1/2 Multi-layer AMBA bus to

B Maintains a coherent and system memory
AHB AMBA buses from CPU

consistent view of memory . Coherency Control Bus

. Y17 = — R

Snoop Control Unit

Multiple homogeneous processing cores (Pn)
Consider embedded SMP need for maximum of 8

Uses a MESI coherency protocol in a weak ordere
consistency model with Berkeley extensions
Can resolve coherency events locally

Supports applications with hybrid based symmetry

Support for DDI

Direct Data
Intervention

Standard AMBA
bus connections

A b a
y i T 4 .40

Coherency Control Bus (CCB)

B AMBA sideband signals on CPU data and control
interface requests
— Implements the extended MESI protocol
B Notification of coherent effecting operations from
CPU to SCU
— Changes in cache line state (from running software)
M Assertion of coherent commands from SCU via
private channel to CPU
— Communication of changes that effects all cores

® SCU requesting data from CPU
— Support for DDI

N e BVE S 00

Memory Consistency

B Important both at the CPU and the system level

B Today's ARM1026EJ-S™ core is (mostly) strongly ordered
— Between PSO and TSO

B ARM-MP (system) defines:

— Weak Ordering Model With respect to program order relaxations, we distinguist
models based on whether they relax the memory order:
- Need for SOftwa re * From a Write to a following Read (W=>R)
. . * Between two Writes (W=>W)
synchronisation and « From a Read to a Following Read or Write (R=>RY
Y In all cases, the relaxation only applies to operation pairs
me mory barrlers with different addresses.

ARM-MP Provides a ‘relaxed’ program order for memory consistency

Memory Barriers

® Hardware Snoop Control Unit (SCU) maintains
consistency among private L1 cache
— Includes consistency over Eviction Write Buffers

B Software through system co-processor interface
(CP15) can:
— Explicitly drain write buffers
— Manipulate cache state
® Implicit barriers under following instruction
— SWP (as used in synchronisation)
W Read barriers
— Not required within relaxed program order

f W] V|
Y : Y "5 .. B S 0

ARMv5 Architecture - Spinlocks

B Atom|Ca”y SerIaIIZIng typedef struct spinlock
SWP instruction D A o P ST B
o0

#define _ setlock(x)
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII __ret;

({
})
#endif
#define spin_lock init(x) \
do { *(x) = SPIN LOCK UNLOCKED; } while (0)

#define spin_unlock wait(x) \

-_ do { barrier(); }
while(((volatile spinlock t *)(x))->lock != 0
#define spin_lock(x) \
do { } while (__setlock(x) == 1)
Y

~

unsigned int _ ret = 1;
_asm___ volatile (
"swp %0, %0, [%1]"
"+r" (__ret)

— — = = = = =

#define spln unlock(x) \
do { ((spinlock t *)(x))->lock = 0; } while ((

Cache Management

B Software required to maintain TLB coherence
— Part of task migration

B Page colouring scheme required to enforce
correspondence between virtual and physical index
— Dependent on cache size and associatively
— Solved in software by imposing high-bit

correspondence between VA and PA

W Additional coprocessor instruction to map VA-to-PA
— Optimizes cache manipulation (line clean)

® Hardware manages the coherence protocol
— Additional MESI states and manipulation

f W] V|
Y : Y "5 .. B -

A A

Interrupt Load Balancing

SMP defines dynamic task assignment

Ability for OS to balance work-items between cores
MP core to simultaneously resolve interrupt requests
Maintain prioritization semantics for software

A need to understand current system load and

anticipated future work load
‘Warmness’ of caches
Cost of task migration
Task deadlines and schedules

To work within the definition of a hybrid-symmetric,
adaptively configured, MP ‘cluster’
No static definition of number of available CPU

Interrupt Distribution Techniques

Requirements from various aspects of MP
From both SMP and AMP software models
Need for software or hardware based load
balancing
Priority, vectoring, scalability, latency demands
Trading existing SoC design (pin based VIC)
against newer (emitter/collector) techniques
How to integrate IPl and message passing

Considered high level designs
Place existing VIC functionality against each core
Insert interrupt routing between SoC VIC system
and each core
Define a command (as opposed to pin) based

emitter/collector routing scheme
A I'abh &
Y : ¥ "4 .48 B

Options for Interrupt Distribution

B Final design for MP still open
— Option 1: Available today
— Option 2: Limited system
advantage
— Option 3: Architectural
implications

Option 1

hare I/O Interru:t Sources

S
IRQ L

Option 2
I/O Interrupt Sources

==

CMP Debugging

MP brings a new set of problems for SoC debug
Need to set breakpoints between CPUs
Need to synchronize (and compress) trace from
each CPU
OS awareness for MP within tools
Core-based design, need to integrate debug
features of hardened cores

Effects
SoC design and IP blocks functionality
Tools need to ‘understand’ SoC design
Need for a system solution

A b a
Y i Y 9 .48

Debug: Cross Trigger Matrix (CTM)

JTAG &

]

ARM Core o ARM Core — Xxx Core =

2

Trace

]

CTM Cross Trigger Matrix ® Multi-core H/W Debug
ETM Embedded Trace Macrocell™
ETB Embedded Trace Buffers™ . Heterogeneous
CTI Cross Trigger Interface — Homogeneous
' W .1V
N e BVE S 00

Trace Funnel

Funnels multiple trace streams from any source to

a single trace port or Embedded Trace Buffer
Asynchronous clock domains supported
All traces are time/cycle correlated

Prioritised stalling mechanism for when trace port is
overloaded

Filters based on trace source ID

All ARM core families supported
ETM v3.x protocol

Other trace protocols supported
e.g. DSP or Nexus
Very simple trace port data format
Compatible with any capture device

Flexible width and frequency
A I'abh &

A System Solution

£ RYDEBUG(dhiystone) = @ARM7TDMI_0:ARM-A-RR [Board] — Anslysistdhiystona) - @AIMZET_DARM-AI Unattached]
el :

I A B Vg tdA|EE

o | e

JTAG Emulator
& Trace capture

Power, Performance, Area (PPA)

Low power is as, if not more, important than
performance for mobile embedded devices

CMP designs look to offer a single design that
Can be run with very low power consumption, or
Can be run with high performance levels

Each aspect has been researched

The Case for a Single-Chip Multiprocessor
Olukotun, Hayfeh, Hammond, Wilson and Chang
Computer Systems Laboratory, Stanford University

An Adaptive Chip-Multiprocessor Architecture

for Future Mobile Terminals
Mladen Nikitovic and Mats Brorsson
Department of Microelectronics and Information
Technology, Royal Institute of Technology

Y i Y 9 .48 B

CMP - Premise for Performance

M |t takes less hardware for a programmer to
have expressed thread / application level
parallelism than for hardware to extract
iInstruction level parallelism
— Uses less silicon for higher performance

M |t is easier to implement multiple simple

designs at higher frequencies than one
complex design

— More efficient use of advanced silicon processes

Information The Case for a Single-Chip Multiprocessor
Olukotun, Hayfeh, Hammond, Wilson and Chang
referenced from Computer Systems Laboratory, Stanford University
research paper: Stanford, CA. October 1996

Y "2 .= T

CMP - Performance Findings

UP vs CMP extrapolated actual processor

Up to double the ==
performance from the [Jie
same die area from a
CMP design running
applications with large
grained thread-level
parallelism

CMP designs are
simpler to implement
and can run at a higher
frequency than the
similarly sized

uniprocessor

A b a
y i T 4 .40

e (256KB)

21mm

On-Chip L2 Cache (256KB)
On-Chip L2 Cach

N
0

o
=
o
[h]
@
[= X
w
3]
=
=
=
[5]
o

CMP - Premise for Low Power

Higher core frequencies drive for higher voltages
leading to cubic increase in power requirements
Intelligent Energy Management (IEM) provides

cubic savings in power consumption on CMP’s
already lower core frequency and voltages.

Devices use energy by both consuming power
statically (leaking) and dynamically (switching)

Adaptive Power Management shuts off entire

CPUs within a CMP when not required for
performance

Information An Adaptive Chip-Multiprocessor Architecture for Future Mobile Terminals

Mladen Nikitovic and Mats Brorsson
referenced from Department of Microelectronics and Information Technology, Royal Institute of Technology
research paper:

Kista Sweden. October 2002
' W .1 Y |

Desired throughput

> 4o o ow B o

Adaptive CMP is up to
twice as power efficient
as a pertfectly
Intelligently Energy
Managed Uniprocessor

IEM plus Adaptive CMP
could save more power

Mreed encode
@ zip encode
mfrag

mdrr

mrtr

Ereed decode
[jzip decode

¢ 5 8 7T 8 8 o2 4 a5 o6 o 38 o 2 o2 BoM
Nr. of cycles (10°)

Figure 2. Workload scenario using the Commbench applications.

Table 2: ACMP configurations used in the experiments.

CMP - Power Consumption Findings

Model Power-saving modes Processor parameters
ACMPx N No adaption. All processors exccute all the |200 MHz. 0.7 V. x processors, 16/x kB instruction and data
’ = Ltime. L1 caches. 64 kB unified L2 cache. 0.275 nJ per inst.
Adaption where an idle proeessor is put into
ACMPx_A [the standby mode. Half of the idle proces-
sors are put into dormant mode.
ACMPx PA Pcrfccll adﬂption into dormant mode without
— |execution time overhead.
PN No power-saving mode. Total running time {800 MHz. 1.65 V. single-processor, 16 kB instruction and
T set to the shortest ACMP execution time. [data L1 caches. 64 kB unified L2 cache. 1.125 nl per inst.
Perfect power-saving mode when idle. Total
SP_PA running time set to the shortest ACMP exe-
cution time.
S Scaled performance to match the need. 450 MHz, 1.09 V. single-processor, 16 kB instruction and
e Never idle. data L1 caches. 64 kB unified L2 cache. 0.556 nJ per inst.
p No power-saving mode. Total execution 800 MHz, 1.65 V, single-processor, 16 kB instruction and
‘ time set to when program finishes all tasks. [data L1 caches. 64 kB unified L2 cache. 1.125 nJ per inst.
Energy-Delay Product (EDP)
3,9
2,0
1.8
& 16
) 1.4
oS 1,2 1
8 10
T 0,8 - | ||
E 064 — —]
S 0,44] — |
2 41 i - - -
0,0 T T T T T T T
+ > < %~ <~ ¥ X~ Ay Ao 9 Q
<
§\/§2@/§%/ Q‘IS §V/§V/Qm/ s %Q/ COQ/
O $) @) N @) < N
¥ Na X ?‘O e ha V‘O

System configurations

Figure 5. The Energy-Delay Product of the different models

S o

e T

Y i ¥ 4 .08

Intelligent Energy Management (IEM)

Adaptive Pow er

2 G e T Controller

current_perf

clk _control

SoC-specific
Clock

ARM & National Semiconductor Collaboration
To bring licensable IP to market
Predictive closed loop / adaptive voltage scaling

Set optimal performance level to reach deadlines
f W .1V |

However: Uniprocessor Designs

Still very relevant in embedded devices
Many of today's OS and RTOS are not MP aware
Continuous need for more application performance
Huge libraries of non-TLP aware code

Further resolves challenges for low power in a
well understood system design

Software for adaptive closed loop voltage and

frequency scaling

Optimized ILP extraction (useful in future for MP)
Some performance hungry algorithms can't
expose TLP

Most folks minds are single threaded !

The ‘optimal’ MP solution will balance ILP & TLP

9.1
Y : ¥ "4 < B B T e

B

Operating System support for MP

Various levels of support for MP hardware
Full dynamic scheduling on SMP
Application visibility of additional cores
Additional cores ‘hidden’ behind library / application

Various levels of maturity

Good support for course-grain TLP
POSIX thread etc

Limited exposure to CMP designs
Not optimized for ‘closeness’ of cores

Mostly research-level support for expressing fine-
grained TLP
OpenMP or specific MP languages
Emerging interest in abstracting TLP away from
programmer (eg. Via speculative parallelism)

'9.17
Y : ¥ "4 < B B T e

MP Middleware Considerations

B Message Passing Interface (MPI) on ARM-IPC
mailbox for communication via common memory
— Defines 4 x 32bit word direct core-core data path
— Driver for ARM IPC interface (ADI veneer)
— Collaborating with DSP vendors on heterogeneous

iInterconnect standards

— http://www-unix.mcs.anl.gov/mpi/

® OpenMP for expressing the finer-grained thread
parallelism that can be supported on CMP designs
— Mostly an issue for tool-chain vendors
— http://www.compunity.org/
— http://phase.etl.go.jp/Omni/home.html

y.4-! "' = T —

Is Our Future Speculative?

® Can you automate (hardware or software) the

extraction of TLP from linear applications?

— Over general code

— For ‘media’ processing

— Within execution environments / virtual machines
M Does this effect a MP platform design ?

— Need for hardware threads ?

— A hardware scheduler ?

® ARM's current target is for declarative parallelism
— Minimizing resources required to benefit from MP
— Maximizing performance and energy conservation
A I'abh &
Y : Y "3 .. T

'|

Testing the Design

DDDDDDDDDDDQDDDDDDDDDDD

EENENENEN TR

VFP10 vic
Isterface Interdace

Communications .
Mailbox
||

Interrupt Distribution
Unit

VIC Interface

Cross Trigger / Trace Multiplex

s LT o

ToM
Interface Iecface

Interface Intedace

Communications -
Mailbox
.

Inter-Processor
Communications

IPC Interface

VP10 VIg VP10
Intorface Intedace - Intorface

Communications
Mailbox

Snoop Control Unit
L1 Cache Coherency

AMBA AHB Interface
Data Write

Communications
Mailbox

Instruction Data Read

B B B B EEE EEEE R E EE

NS ETESNETEN TN TS ET eSS ESpS S paE-

o B

ARM MP Trial Demonstrator Platform

B

Conclusions

We’ve been building an MP ecosystem for a while
Releasing MP capable products
Partners are building lots of MP designs

ARM believes (SMP) chip multiprocessing is very

interesting for embedded devices both from the
Performance from a given area of silicon, and the
Energy required to get a specific performance

So we're now at the stage to:
Work with the partnership to formalize MP support
Introduce capabilities for SMP

Make available a trial implementation of a ARM MP
platform design for partner evaluation / feedback

9.1V
Y : ¥ "4 .48 B T e

