Communication Refinement for a Network-on-Chip Platform

Axel Jantsch and Zhonghai Lu Royal Institute of Technology, Stockholm

April 2003

Overview

Nostrum Architecture and Platform
Communication Stack
Communication Patterns
Refinement
Summary

Nostrum Topology: Mesh

Characteristics:

- Resource-to-switch ratio: 1
- A switch is connected to 4 switches and 1 resource
- A resource is connected to 1 switch
- Max number of hops grows with 2n

Motivation:

- Regularity of layout; predictable electrical properties
- Expected locality of traffic

The Node in a Mesh

NI: Network Interface:

- Compulsory
- HW
- Implements the network layer protocol

Adapter: Resource specific interface circuit;

SLI: Session Layer Interface:

- Optional
- Hardware and/or software
- Implements the session layer protocol

Node Geometry

Scenario:

- 60nm CMOS
- $22mm \times 22mm$ chip size
- 300nm minimal wire pitch
- $2mm \times 2mm$ resource
- $100\mu m \times 100\mu m$ switch
- ullet $\Rightarrow 1333$ wires on four metal layers
- switch-to-switch connection: 256 shielded and differential data signals;
- switch-to-resource connection: 256 data signals

Nostrum Platform

- Communication Infrastructure
- Resource management and arbitration services
- Design methodology

Nostrum Protocol Stack

Communication Layers:

- Physical layer: switch-to-switch and switch-to-resource
- Data link layer: switch-to-switch and switch-to-resource
- Network layer: resource-to-resource
- Session layer: process-to-process
- Application layer: application-to-application

Network Layer

- Lossless communication
- Best effort service:
 - ★ Relative x-y addressing
 - ⋆ Out-of-order packet arrival
 - ★ Deflective routing with no buffers and no routing tables
- Virtual circuits with guaranteed bandwidth; varying latency
- Virtual circuits with guaranteed latency
 - ★ Circuit build-up and tear-down
 - ⋆ In-order packet arrival
 - * Addressing by circuit identifier

Session Layer

- Message passing communication:
 - * open/listen/accept/bind primitives to open a channel
 - * send/receive to communicate
 - * close to tear down the channel
 - ★ blocking/non-blocking send/receive
- Shared memory communication:
 - * allocation
 - ★ read/write
 - * free
 - ★ interruptible/non-interruptible
- User controlled synchronisation
- Reliability levels

We focus on Message passing, Synchronous communication, End-to-end data acknowledgement

Communication Patterns

Channel Refinement

Synchronous Communication

Asynchronous Interface

Channel performance model

Channel Refinement - cont'd

Refinement for Reliability

Refinement for Performance

Mapping to NoC Services

Asynchronous Interfaces

- Reflect the major steps of the targeted services
 - ⋆ Open; send/receive; close
 - ★ Assembling and disassembling of messages
 - ★ Buffering
- Introduction of flow control
 - ★ for opening a connection
 - ⋆ for sending/receiving messages

Modelling the Channel

- Delay
- Jitter
- Reliability
- Deterministic or stochastic model

Refinement for Reliability

- Design for a fault model!
- Possible faults:
 - ⋆ Lost package
 - ★ Faulty data in arriving packet
 - ⋆ Spurious packet
 - ★ Faulty sender/receiver
 - * etc.
- Example measure: Acknowledgement for every n packets

Refinement for Performance

Options for performance optimisations:

- Mapping to lower level services
- Buffer dimensioning for hiding jitter and delays due to flow control
- Overlapping acknowledgement with sending data
- etc.

Mapping onto NoC Services

- Selecting best effort/guaranteed bandwidth/guaranteed latency service
- Validating performance and reliability
- Merging several channels into a single virtual circuit
- Instantiating adapter to the NoC service
- Static/Dynamic allocation of virtual circuits

Summary

- Refinement of task-to-task communication to NoC services
- Functionality, performance, area, power consumption and reliability are first class design objectives
- Six step refinement procedure

