

Networks on chip: Evolution or Revolution?

Luca Benini lbenini@deis.unibo.it DEIS-Universita' di Bologna

MPSOC 2004

Running forward...

- Four 350/400 MHz StarCore SC140 DSP extended cores
- 16 ALUs: 5600/6400 MMACS
- 1436 KB of internal SRAM & multi-level memory hierarchy
- Internal DMA controller supports 16 TDM unidirectional channels,
- Two internal coprocessors (TCOP and VCOP) to provide special-purpose processing capability in parallel with the core processors

 6 Cores: Motorola's MSC8126 SoC platform for 3G base stations (late 2003)

L. Benini MPSOC 2004

2

What's happening in SoCs?

- Technology: no slow-down in sight!
 - Faster and smaller transistors
 - ... but slower wires, lower voltage, more noise!
- Design complexity: from 2 to 10 to 100 cores!
 - Design reuse is essential
 - ...but differentiation/innovation is key for winning on the market!
- Performance and power: GOPS for MWs!
 - Performance requirements keep going up
 - ...but power budgets don't!

Benini MPSOC 2004

,

...and on-chip communication?

- Starting point: the "on chip bus"
 - Advances in protocols
 - Advances in topologies
- Revolutionary approaches
 - Networks on chip
- Things are moving FAST
 - ...but it's evolution or revolution?

L. Benini MPSOC 2004

.

Outline

- Introduction and motivation
- On-chip networking
- The HW-SW interface

L. Benini MPSOC 2004

-

On-chip bus Architecture

- Many alternatives
 - Large semiconductor firms (e.g. IBM Coreconnect, STMicro STBus)
 - Core vendors (e.g. ARM AMBA)
 - Interconnect IP vendors (e.g. SiliconBackplane)
- Same topology, different protocols

L. Benini MPSOC 2004

-

Burst transfers

- Burst transfers amortize arbitration cost
 - Grant bus control for a number of cycles
 - Help with DMA and block transfers
 - Help hiding arbitration latency
- Requires safeguards against starvation
 - Split and error

L. Benini MPSOC 2004

13

Critical analysis: bottlenecks

Protocol

- Lacks parallelism
 - In order completion
 - No multiple outstanding transactions: cannot hide slave wait states
- High arbitration overhead (on single-transfers)
- Bus-centric vs. transaction-centric
 - Initiators and targets are exposed to bus architecture (e.g. arbiter)

Topology

Scalability limitation of shared bus solution!

L. Benini MPSOC 2004

1/

- On-chip interconnect solution by ST
 - Level 1-3: increasing complexity (and performance)
- Features
 - Higher parallelism: 2 channels (M-S and S-M)
 - Multiple outstanding transactions with out-of order completion
 - Supports deep pipelining
 - Supports Packets (request and response) for multiple data transfers
 - Support for protection, caches, locking
- Deployed in a number of large-scale SoCs in STM

L. Benini MPSOC 2004

STBUS bottlenecks

- Protocol is not fully transaction-centric
 - Cannot connect initiator to target (e.g. initiator does not have control flow on the response channel)
- Packets are atomic on the interconnect
 - Cannot initiate nor receive multiple packets at the same time
 - Large data transfers may starve other initiators

L. Benini MPSOC 2004

17

AMBA AXI

- Latest (2003) evolution of AMBA
 - Advanced eXtensible Interface
- Features
 - Fully transaction centric: can connect M to S with nothing in between
 - Higher parallelism: multiple channels
 - Supports bus-based power management
 - Support for protection, caches, locking
- Deployment: ??

L. Benini MPSOC 2004

Multiple outstanding transactions

- A transaction implies activity on multiple channels
 - E.g Read uses the Address and Read channel
- Channels are fully decoupled in time
 - Each transaction is labeled when it is started (Address channel)
 - Labels, not signals, are used to track transaction opening and closing
 - Out of order completion is supported (tracking logic in master), but master can request in order delivery
- Burst support
 - Single-address burst transactions (multiple data channel slots)
 - Bursts are not atomic!
- Atomicity is tricky
 - Exclusive access better than locked access

L. Benini MPSOC 2004

Highly parallel benchmark (no slave bottlenecks)

1 kB cache (low bus traffic)

256 B cache (high bus traffic)

L. Benini MPSOC 2004

STBus management has less arbitration latency overhead, especially noticeable in low-contention conditions

L. Benini MPSOC 2004

23

Topology

- Single shared bus is clearly non-scalable
- **---**
- Evolutionary path
 - "Patch" bus topology
- Two approaches
 - Clustering & Bridging
 - Multi-layer/Multibus

L. Benini MPSOC 2004

Topology speedup (AMBA AHB)

- Independent tasks (matrix multiply)
- With & without semaphore synchronization
- 8 processors (small cache)

Crossbar: critical analysis

- No bandwidth reduction
- Scales poorly
 - N² area and delay
 - A lot of wires and a lot of gates in a busbased crossbar
 - E.g. Area_cell_4x4/Area_cell_bus ~2 for STbus
- No locality
- Does not scale beyond 10x10!

Benini MPSOC 2004

S٦

NOCs vs. Busses

STBUS and AXI

Packet-based

- No distinction address/data, only packets (but of many types)
- Complete separation between end-to-end transactions and data delivery protocols
- Distributed vs. centralized
 - No global control bottleneck
 - Better link with placement and routing
- Bandwidth scalability, of course!

L. Benini MPSOC 2004

The "power of NoCs"

Design methodology

Clean separation at the session layer:

- Define end-to-end transactions
- 2. Define quality of service requirements
- 3. Design transport, network, link, physical

Modularity at the HW level: only 2 building blocks

- Network interface
- 2. Switch (router)

Scalability is supported from the ground up (not as an afterthought)

L. Benini MPSOC 2004

22

Building blocks: NI

- Session-layer interface with nodes
- Back-end manages interface with switches

Standardized node interface @ session layer.

Initiator vs. target distinction is blurred

- 1. Supported transactions (e.g. QoSread...)
- 2. Degree of parallelism
- 3. Session prot. control flow & negotiation

NoC specific backend (layers 1-4)

- 1. Physical channel interface
- 2. Link-level protocol
- Network-layer (packetization)
- 4. Transport layer (routing)

Benini MPSOC 2004

Building blocks: Switch

- Router: receives and forwards packets
 - NOTE: Packet-based does not mean datagram!
- Level 3 or Level 4 routing
 - No consensus, but generally L4 support is limited (e.g. simple routing)

L. Benini MPSOC 2004

35

Xpipes: context

- Typical applications targeted by SoCs
 - Complex
 - Highly heterogeneous
 - Communication intensive
- Xpipes is a synthesizable, high performance, heterogeneous NoC infrastructure

Benini MPSOC 2004

Heterogeneous topology

SoC component specialization lead to the integration of heterogeneous cores

Ex. MPEG4 Decoder

- Non-uniform block sizes
- SDRAM: communication bottleneck
- Many neighboring cores do not communicate

On a homogeneous fabric:

- Risk of under-utilizing many tiles and links
- Risk of localized congestion

L. Benini MPSOC 2004

Switch (s-Xpipes)

- •Plain latching of inputs
- •Buffering resources are on the output ports
 - •FIFOs for performance (tunable area/speed tradeoff)
 - •Circular buffers for ACK/NACK management (minimal size if directly attached to downstream component, can be larger for pipelined links)

- ACK/NACK flow control
- •2-stage pipeline
- •Tuned for high clock speeds

L. Benini MPSOC 2004

39

Example: MPEG4 decoder

 Core graph representation with annotated average communication requirements

Benini MPSOC 2004

Performance, area and power Less latency and better Mesh Scalability of custom NoCs Cust2 46 Relative link utilization (customNoC/meshNoC): 1.5, 1.55 Relative area (meshNoC/customNoC): 1.52, 1.85 Relative power 36 (meshNoC/customNoC): 1.03, 1.22 32 BW (in GB/s) Benini MPSOC 200

In cooperation with Stanford Univ.

L. Benini MPSOC 2004

43

Outline

- Introduction and motivation
- On-chip networking
- The HW-SW interface
 - Session layer and above

L. Benini MPSOC 2004

- Evolutionary shift from bus-based interconnect to NoCs
 - Well underway (there's no stopping now)
 - Methodology/tooling is the main issue
- Platform challenges
 - Programming abstraction
 - HW/SW tradeoffs in session layer support

L. Benini MPSOC 2004