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Scalable VLIW 
Media Processor:
• 100 to 300+ MHz
• 32-bit or 64-bit

Nexperia™

System Buses
• 32-128 bit

General-purpose 
Scalable RISC 
Processor
• 50 to 300+ MHz
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Library of Device
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• Image coprocessors
• DSPs
• UART
• 1394
• USB
…

TM-xxxx
D$

I$

TriMedia CPU

DEVICE IP BLOCK

DEVICE IP BLOCK

DEVICE IP BLOCK

.

.

.

DVP SYSTEM SILICON

P
I B

U
S

SDRAM

MMI

D
V

P
 M

E
M

O
R

Y
 B

U
SDEVICE IP BLOCK

PRxxxx
D$

I$

MIPS CPU

DEVICE IP BLOCK
.

.

.
DEVICE IP BLOCK

P
I B

U
S

TriMedia™MIPS™

The evolution of SoC platforms

n 2 Cores: Philips’ Nexperia PNX8850 SoC
platform for High-end digital video (2001)
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Running forward…

n Four 350/400 MHz StarCore
SC140 DSP extended cores

n 16 ALUs: 5600/6400 MMACS 
n 1436 KB of internal SRAM & 

multi-level memory hierarchy 
n Internal DMA controller supports 

16 TDM unidirectional channels, 
n Two internal coprocesssors

(TCOP and VCOP) to provide
special-purpose processing 
capability in parallel with the core 
processors 

n 6 Cores: Motorola’s MSC8126 SoC platform 
for 3G base stations (late 2003)
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What’s happening in SoCs?
n Technology: no slow-down in sight!

n Faster and smaller transistors 
n … but slower wires, lower voltage, more noise!

n Design complexity: from 2 to 10 to 100 cores!
n Design reuse is essential
n …but differentiation/innovation is key for winning 

on the market!
n Performance and power: GOPS for MWs!

n Performance requirements keep going up
n …but power budgets don’t!
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…and on-chip communication?

n Starting point: the “on chip bus”
n Advances in protocols
n Advances in topologies

n Revolutionary approaches
n Networks on chip

n Things are moving FAST
n …but it’s evolution or revolution?
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Outline

n Introduction and motivation
n On-chip networking
n The HW-SW interface
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On-chip bus Architecture
n Many alternatives

n Large semiconductor firms (e.g. IBM Coreconnect, 
STMicro STBus)

n Core vendors (e.g. ARM AMBA)
n Interconnect IP vendors (e.g. SiliconBackplane)

n Same topology, different protocols
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AMBA bus

AHB: high-speed high-bandwidth 
multi-master bus

APB: Simplified processor for
general purpose peripherals

System-
Peripheral
BusCPU

EU IO

EU Mem
Mem

CPU

AMBA High-speed bus Bridge

Master port
Slave port
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AHB Bus architecture

Different wires

Dedicated wires

NO Bidirectional wires
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AMBA basic transfer

For a write

For a read

Pipelining increases
Bus bandwidth
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Bus arbitraton

ARBITER

Dedicated wires

Shared address bus

HBREQ_M3

HBREQ_M2

HBREQ_M1

Arbitration Protocol is defined, but Arbitration Policy is not
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The price for arbitration

Time for arbitration
Time for handshaking

Wait state
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Burst transfers

n Burst transfers amortize arbitration cost
n Grant bus control for a number of cycles
n Help with DMA and block transfers
n Help hiding arbitration latency

n Requires safeguards against starvation
n Split and error
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Critical analysis: bottlenecks

n Protocol
n Lacks parallelism

n In order completion
n No multiple outstanding transactions: cannot hide slave wait states

n High arbitration overhead (on single-transfers)
n Bus-centric vs. transaction-centric

n Initiators and targets are exposed to bus architecture (e.g. arbiter)

n Topology
n Scalability limitation of shared bus solution!
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STBUS

n On-chip interconnect solution by ST
n Level 1-3: increasing complexity (and performance)

n Features
n Higher parallelism: 2 channels (M-S and S-M)
n Multiple outstanding transactions with out-of order completion
n Supports deep pipelining
n Supports Packets (request and response) for multiple data transfers
n Support for protection, caches, locking

n Deployed in a number of large-scale SoCs in STM
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STBUS Protocol (Type 3)

Target

Initiator port Target port

Initiator

Request channel

Response channel

Transaction

Req Packet Resp Packet

Cell level

Packet level

Transaction level

Signal level
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STBUS bottlenecks

n Protocol is not fully transaction-centric
n Cannot connect initiator to target (e.g. initiator does not have control 

flow on the response channel)

n Packets are atomic on the interconnect
n Cannot initiate nor receive multiple packets at the same time
n Large data transfers may starve other initiators
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AMBA AXI 

n Latest (2003) evolution of AMBA
n Advanced eXtensible Interface

n Features
n Fully transaction centric: can connect M to S with nothing in between
n Higher parallelism: multiple channels
n Supports bus-based power management
n Support for protection, caches, locking

n Deployment: ??
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Multi-channel M-S interface

M
aster

Slave

Address Channel

Write channel

Read channel

Write response ch.

VALID

DATA

READY

Channel hanshaking

4 parallel channels are 
available!
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Multiple outstanding transactions

n A transaction implies activity on multiple channels
n E.g Read uses the Address and Read channel

n Channels are fully decoupled in time
n Each transaction is labeled when it is started (Address channel)
n Labels, not signals, are used to track transaction opening and closing
n Out of order completion is supported (tracking logic in master),

but master can request in order delivery

n Burst support
n Single-address burst transactions (multiple data channel slots)
n Bursts are not atomic!

n Atomicity is tricky
n Exclusive access better than locked access
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Scalability: Execution Time

n Highly parallel benchmark (no slave bottlenecks)
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§ 1 kB cache (low bus 
traffic)

§ 256 B cache (high 
bus traffic)
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Scalability: Protocol Efficiency

AHB AXI STBus STBus (B)
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n Increasing contention: AXI, STBus show 80%+ 
efficiency, AHB < 50%
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Scalability: latency
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§ STBus management has less arbitration latency overhead, 
especially noticeable in low-contention conditions
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Topology

n Single shared bus is
clearly non-scalable

n Evolutionary path
n “Patch” bus topology

n Two approaches
n Clustering & Bridging
n Multi-layer/Multibus

B

M

M
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Clustering and bridging
n Heterogeneous architectures with asymmetric traffic

n Cost for going across a bridge is HIGH
n Bus clusters for bandwidth & latency reasons

n Example: EASY SoCs for WLAN

T

I

T

I
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AMBA Multi-layer AHB
n Enables parallel access paths between 

multiple masters and slaves
n Fully compatible with AHB wrappers

Master1

Master2

Slave1
Interconnect

Matrix

Slave1

Slave1

AHB1

AHB2

Slave Port
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Multi-Layer AHB implementation
n The matrix is made of slave ports

n No explicit arbitration of slaves
n Variable latency in case of destination conflicts

Master1

Master2

Slave1

Slave4

M
ux

M
ux

Decode

Decode

Crossbar arbitration

L. Benini MPSOC 2004 28

STBUS Crossbar & Partial CB

PC

FC
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Topology speedup (AMBA AHB)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

Semaphore No semaphore

Shared

Bridging

MultiLayer

§ Independent tasks (matrix 
multiply)
§ With & without semaphore

synchronization
§ 8 processors (small cache)
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Crossbar: critical analysis

n No bandwidth reduction 
n Scales poorly

n N2  area and delay
n A lot of wires and a lot of gates in a bus-

based crossbar
n E.g.  Area_cell_4x4/Area_cell_bus ~2 for STbus

n No locality
n Does not scale beyond 10x10!
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NoCs

§ More radical solutions in the long term

Ø Nostrum
Ø HiNoC
Ø Linkoeping SoCBUS
Ø SPIN
Ø Star-connected on-chip network
Ø Aethereal
Ø Proteo
ØXpipes
Ø… (at least 15 groups)

CPU

Memory

DSP

Memory

link
switch

network 
interface

CPU
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NOCs vs. Busses
n Packet-based

n No distinction address/data, only packets (but of 
many types)

n Complete separation between end-to-end 
transactions and data delivery protocols

n Distributed vs. centralized
n No global control bottleneck
n Better link with placement and routing

n Bandwidth scalability, of course!

ST
BU

S 
an

d 
AX

I 
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The “power of NoCs”

Design methodology
Clean separation at the session layer:

1. Define end-to-end transactions
2. Define quality of service requirements
3. Design transport, network, link, physical 

Modularity at the HW level: only 2 building blocks
1. Network interface
2. Switch (router)

Scalability is supported from the ground up
(not as an afterthought)
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Building blocks: NI

n Session-layer interface with nodes
n Back-end manages interface with switches

Front end

Backend

Standardized node interface @ session layer. 
Initiator vs. target distinction is blurred

1. Supported transactions (e.g. QoSread…)
2. Degree of parallelism
3. Session prot. control flow & negotiation

NoC specific backend (layers 1-4)
1. Physical channel interface
2. Link-level protocol
3. Network-layer (packetization)
4. Transport layer (routing)

Node Switches
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Building blocks: Switch
n Router: receives and forwards packets

n NOTE: Packet-based does not mean datagram!

n Level 3 or Level 4 routing
n No consensus, but generally L4 support is limited (e.g. simple routing)

Crossbar

Allocator
Arbiter

Output buffers
& control flow

Input buffers
& control flow

QoS &
Routing

Data ports
with control flow
wires
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Xpipes: context
n Typical applications targeted by SoCs

n Complex
n Highly heterogeneous
n Communication intensive

n Xpipes is a synthesizable, high performance, 
heterogeneous NoC infrastructure

Task1 Task2 Task4

Task3

SB

Task5

P1(T1) P4(T4)

P3(T3) P5(T5)

NI

NINI

NI

L1
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Heterogeneous topology

SoC component specialization lead to the integration of 
heterogeneous cores

Ex. MPEG4 Decoder

• Non-uniform block sizes
• SDRAM: communication

bottleneck
• Many neighboring cores

do not communicate

§ Risk of under-utilizing many tiles and links
§ Risk of localized congestion

On a homogeneous fabric:
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Network interface

Open Core Protocol (OCP)
End-to-end communication protocol

• pipelining
• independence of request/response       

phase

Network protocol

IP
Network 

Interface Network

PAYLOAD HEADERTAIL

Packet

FLITFLITFLIT…FLIT
Header includes:
üPath across the network
üSource
üDestination
üCommand type

üBurst ID (MBurst)
üPacket identifier within message (ID-PACKET)
ü Local target IP address (IP_ADDR)

Transaction centric
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Switch (s-Xpipes)

Crossbar

Allocator
Arbiter

•Plain latching of inputs
•Buffering resources are on the output ports

•FIFOs for performance (tunable area/speed tradeoff)
•Circular buffers for ACK/NACK management (minimal size if directly
attached to downstream component, can be larger for pipelined links)

•ACK/NACK flow control

•2-stage pipeline

•Tuned for high clock speeds
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Example: MPEG4 decoder 
n Core graph representation with annotated 

average communication requirements
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NoC Floorplans

General purpose: mesh

Application Specific 
NoC1 (centralized)

Application Specific 
NoC2 (distributed)
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Performance, area and power

n Relative link utilization
(customNoC/meshNoC):
1.5, 1.55

n Relative area
(meshNoC/customNoC):
1.52, 1.85

n Relative power
(meshNoC/customNoC):
1.03, 1.22

Less latency and better
Scalability of custom NoCs
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NoC synthesis flow

In cooperation with Stanford Univ.

SUNMAP

Power  Lib

Area Lib

Floor-
planner

xpipes
Library

xpipes
Compiler

SystemC
Design

Simu-
lation

Mapping
Onto

Topologies
Topology
Selection

Topology
Library

Routing
Function

Co-Design

Appln
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Outline

n Introduction and motivation
n On-chip networking
n The HW-SW interface

n Session layer and above
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Mapping applications
Applications

Abstract Parallel architecture

T1T1

T2T2 T3T3

BB

EE

PEPE

PEPE

NoC

PEPE

MM

MM

IOIO

n Communication abstractions
n Shared memory (UMA vs NUMA)
n Message passing

n What hardware support to 
communication abstractions?
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MPARM Architecture

INTERCONNECTION

ARM ARM INTERRUPT
CONTROLLER

PRI MEM 4 SHARED 
MEM SEMAPHORES

ARM ARM

PRI MEM 3PRI MEM 2PRI MEM 1

STbusor   AMBA or Xpipes
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Basic architecture

MMU
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Support for message passing

MMU

I/D Cache

Scratch-pad
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Semaphores

MMU

I/D Cache
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ARM 
Core

Processor tile
#N

Semaphores
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HW support for MP: results
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Matrix Pipeline with basic architectureMatrix Pipeline with message passing support
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Send+Receive cost: 35KCycles (basic architecture) vs. 4KCycles (MP support)
Configuration: 4 Processors, Shared bus
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ARM CoreARM CORE

Support for UMA

CACHE

BUS*

SNOOP
DEVICE

Invalidate/Update

Address and Data

Processor tile
#1

*cannot be a generic interconnect!
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Readers-writers: 
varying cache size
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Readers-writers: 
varying buffer size

Cycles

0.8

0.85

0.9

0.95

1

1.05

1.1

16 256 1024

SW

WTI

WTU

Energy

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

16 256 1024

SW

WTI

WTU

Energy-Delay product

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

16 256 1024

SW

WTI

WTU

Power

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

16 256 1024

SW

WTI

WTU



27

L. Benini MPSOC 2004 53

Conclusions

n Evolutionary shift from bus-based 
interconnect to NoCs
n Well underway (there’s no stopping now)
n Methodology/tooling is the main issue

n Platform challenges
n Programming abstraction
n HW/SW tradeoffs in session layer support


