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The evolution of SoC platforms
‘S[ﬁw._l TriMedia™

Scalable VLIW
Media Processor:
« 100 to 300+ MHz
« 32-bit or 64-bit

Nexperia™
System Buses
« 32-128 bit

= 2 Cores: Philips’ Nexperia PNX8850 SoC

platform for High-end digital video (2001)
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Running forward...

= Four 350/400 MHz StarCore
SC140 DSP extended cores

= 16 ALUs: 5600/6400 MMACS

= 1436 KB of internal SRAM &
multi-level memory hierarchy

= [nternal DMA controller supports
16 TDM unidirectional channels,

= Two internal coprocesssors
(TCOP and VCOP) to provide
special-purpose processing D1t

capability in parallel with the core | %ﬂm e e
processors [ ——— E-N':IE-E::
= 6 Cores: Motorola’s MSC8126 SoC platform

for 3G base stations (late 2003)
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What's happening in SoCs?

= Technology: no slow-down in sight!
= Faster and smaller transistors
= ... but slower wires, lower voltage, more noise!

= Design complexity: from 2 to 10 to 100 cores!
= Design reuse is essential

= ...but differentiation/innovation is key for winning
on the market!

= Performance and power: GOPS for MWs!
= Performance requirements keep going up
= ...but power budgets don't!




...and on-chip communication?

= Starting point: the “on chip bus”
= Advances in protocols
= Advances in topologies
= Revolutionary approaches
= Networks on chip
= Things are moving FAST
= ...but it’s evolution or revolution?
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Outline

= On-chip networking
= The HW-SW interface




On-chip bus Architecture

= Many alternatives

» Large semiconductor firms (e.g. IBM Coreconnect,
STMicro STBuSs)

= Core vendors (e.g. ARM AMBA)
» Interconnect IP vendors (e.g. SiliconBackplane)

= Same topology, different protocols
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& AMBA bus

m Master port
m Slave port

AMBA High-speed bus
> | 4

AHB: high-speed high-bandwidth APB: Simplified processor for
multi-master bus general purpose peripherals
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$ AHB Bus architecture
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Bus arbitraton

HMASTER[E D]

HGRANT M1 Master | HADDR_M1[31:0]

ARBITER r—— Sha/red address bus
GRANT M2_| Master |HADDR_M2[31:0] HADDR to all slaves
»> HBREQ_M2 #2
Dedicated wires
Address and
oontrol

madtiplexor

HERANT M3_| Master |HADDR M3[21:0]

HBREQ_M3 *d

Arbitration Protocol is defined, but Arbitration Policy is not
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The price for arbitration
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Burst transfers

= Burst transfers amortize arbitration cost
= Grant bus control for a number of cycles
= Help with DMA and block transfers
= Help hiding arbitration latency

= Requires safeguards against starvation
= Split and error
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Critical analysis: bottlenecks

= Protocol

= Lacks parallelism

= In order completion

= No multiple outstanding transactions: cannot hide slave wait states
= High arbitration overhead (on single-transfers)
= Bus-centric vs. transaction-centric

= Initiators and targets are exposed to bus architecture (e.g. arbiter)

= Topology
= Scalability limitation of shared bus solution!




STBUS

= On-chip interconnect solution by ST
= Level 1-3: increasing complexity (and performance)

= Features
= Higher parallelism: 2 channels (M-S and S-M)
= Multiple outstanding transactions with out-of order completion
= Supports deep pipelining
= Supports Packets (request and response) for multiple data transfers
= Support for protection, caches, locking

= Deployed in a nhumber of large-scale SoCs in STM
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STBUS Protocol (Type 3)
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STBUS bottlenecks

= Protocol is not fully transaction-centric

= Cannot connect initiator to target (e.qg. initiator does not have control
flow on the response channel)

= Packets are atomic on the interconnect
= Cannot initiate nor receive multiple packets at the same time
= Large data transfers may starve other initiators
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AMBA AXI

= Latest (2003) evolution of AMBA

= Advanced eXtensible Interface

= Features
= Fully transaction centric: can connect M to S with nothing in between
= Higher parallelism: multiple channels
= Supports bus-based power management
= Support for protection, caches, locking

= Deployment: ??




Multi-channel M-S interface

Channel hanshaking
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_ 4 parallel channels are
Write response ch. available!
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Multiple outstanding transactions

A transaction implies activity on multiple channels
= E.g Read uses the Address and Read channel

Channels are fully decoupled in time
= Each transaction is labeled when it is started (Address channel)
= Labels, not signals, are used to track transaction opening and closing

= Out of order completion is supported (tracking logic in master),
but master can request in order delivery

Burst support
= Single-address burst transactions (multiple data channel slots)
= Bursts are not atomic!

Atomicity is tricky
= Exclusive access better than locked access

20
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Scalability: Execution Time

= Highly parallel benchmark (no slave bottlenecks)
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Interconnect busy

Scalability: Protocol Efficiency
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Scalability: latency

Il STBus (B) write avg
@ STBus (B) write min
W STBus (B) read avg
A STBus (B) read min
P AXI write avg
<{ AXI write min
M AXI read avg
X AXlread min

Latency for access completion (cycles)

® STBus management has less arbitration latency overhead,
especially noticeable in low-contention conditions
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Topology

= Single shared bus is

clearly non-scalable L
= Evolutionary path
= "Patch” bus topology
= Two approaches = E_-:D
= Clustering & Bridging
= Multi-layer/Multibus === P?E




Clustering and bridging

= Heterogeneous architectures with asymmetric traffic
= Cost for going across a bridge is HIGH

= Bus clusters for bandwidth & latency reasons
= Example: EASY SoCs for WLAN [ = | _
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AMBA Multi-layer AHB

= Enables parallel access paths between
multiple masters and slaves

= Fully compatible with AHB wrappers
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Multi-Layer AHB implementation

= The matrix is made of slave ports
= No explicit arbitration of slaves
= Variable latency in case of destination conflicts
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Topology speedup (AMBA AHB)

7000000

. 6000000
= Independent tasks (matrix
multiply) 5000000 {—|
= With & w!thqut semaphore 2000000 1] -
synchronization W Bridging
= 8 processors (small cache) 3000000 1 E— L
2000000 {—
1000000 {—
0
Semaphore No semaphore
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Crossbar: critical analysis

= No bandwidth reduction
= Scales poorly
= N2 area and delay

= A lot of wires and a lot of gates in a bus-
based crossbar
« E.g. Area_cell_4x4/Area_cell_bus ~2 for STbus

= No locality
= Does not scale beyond 10x10!




NoCs

network
switch\interface

» Nostrum

» HiNoC

» Linkoeping SoCBUS

> SPIN

» Star-connected on-chip network
> Aethereal

> Proteo

> Xpipes

> ... (at least 15 groups)
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NOCs vs. Busses

= Packet-based
= No distinction address/data, only packets (but of

many types)
= Complete separation between end-to-end
transactions and data delivery protocols

= Distributed vs. centralized
= No global control bottleneck
= Better link with placement and routing

= Bandwidth scalability, of course!

STBUS and AXI
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The “power of NoCs”

Design methodology
Clean separation at the session layer:
1. Define end-to-end transactions
2. Define quality of service requirements
3. Design transport, network, link, physical
Modularity at the HW level: only 2 building blocks
1. Network interface
2. Switch (router)

Scalability is supported from the ground up
(not as an afterthought)
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Building blocks: NI

= Session-layer interface with nodes
= Back-end manages interface with switches

3 =
Node =1 Q Switches
o) D N
5 =2
a =5 \
Standardized node interface @ session layer. TOC srg:gl glbgr:::::éjl (ilr?t\éergcz“)
Initiator vs. target distinction is blurred 2 Link-level protocol
1. Supported transagtions (e.g. QoSread...) 3: Network-layer (packetization)
2, gglee o el e 4. Transport layer (routing)

3. Session prot. control flow & negotiation
34
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Building blocks: Switch

= Router: receives and forwards packets
= NOTE: Packet-based does not mean datagram!

= Level 3 or Level 4 routing
= No consensus, but generally L4 support is limited (e.g. simple routing)

Input buffers Output buffers
& control flow YN / & control flow

i tllocatorl

Data ports / iQoS &
with control flow Routing..

wires

Crossbar

IEIIEIIEI
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= Xpipes: context

= Typical applications targeted by SoCs
= Complex
= Highly heterogeneous
= Communication intensive

= Xpipes is a synthesizable, high performance,
heterogeneous NoC infrastructure

D-0-0
> 1
' . NI NI

P3(T3) | |P5(T5)

U
el
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Heterogeneous topology

SoC component specialization lead to the integration of
heterogeneous cores

Ex. MPEG4 Decoder

i e e Non-uniform block sizes
[ | - ||® SDRAM: communication
_| _— bottleneck

I e Many neighboring cores
I § i do not communicate

[Cdleg

On a homogeneous fabric:
= Risk of under-utilizing many tiles and links

= Risk of localized congestion
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Network interface

Transaction centric

¢
$. \\G«a
&

Network protocol

(] lkat

Open Core Protocol (OCP)
End-to-end communication protocol
. p|peI|n|ng
« iIndependence of request/response

phase

[ | [ I I
] FLIT ... FLIT FLIT  FLIT
Header includes:

v'Path across the network  v'Burst ID (MBurst)
v Sour_ce _ v'Packet identifier within message (ID-PACKET)
v'Destination v Local target IP address (IP_ADDR)
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Switch (s-Xpipes)

*Plain latching of inputs

*Buffering resources are on the output ports
*FIFOs for performance (tunable area/speed tradeoff)
«Circular buffers for ACK/NACK management (minimal size if directly
attached to downstream component, can be larger for pipelined links)

Allocator
[ arviter | [TT] ) *ACK/NACK flow control

"IID @ +2-stage pipeline

R
\IID @ *Tuned for high clock speeds

1011
s
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Example: MPEG4 decoder

m Core graph representation with annotated
average communication requirements
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General purpose: mesh

Application Specific
NoC1 (centralized)
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Application Specific
NoC2 (distributed)
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& Performance, area and power
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| Less latency and better

Scalability of custom NoCs

= Relative link utilization
(customNoC/meshNoC):
1.5, 1.55

= Relative area
(meshNoC/customNoC):
1.52, 1.85

= Relative power
(meshNoC/customNoC):
1.03, 1.22
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& NoC synthesis flow

SUNMAP

In cooperation with Stanford Univ.
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& Outline

s Introduction and motivation
= On-chip networking

= The HW-SW interface
= Session layer and above
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g Mapping applications

hstFact ;arallelzrc?ﬁécﬁme\

=~ Communication abstractions

= Shared memory (UMA vs NUMA)
= Message passing

=  What hardware support to
communication abstractions?
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MPARM Architecture
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Basic architecture

Processor tile

I/D Cache

Processor tile

#1
#N

=
(v —
o

A
MMU
A
| MMU [ »

»

I/D Cache
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SHARED
MEM

L
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INTERCONNECTIO

SEMAP
HORES
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| Scratch-pad L:L

»|_Semaphores 14

| Scratch-pad L:L

»| Semaphores 1
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Support for message passing

2
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Relative execution time
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Matrix Pipeline with message passing support Matrix Pipeline with basic architecture
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Relative execution time

30.00% +—
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[ shared
M Bridging
| [ MultiLayer

8 cores

Send+Receive cost: 35KCycles (basic architecture) vs. 4KCycles (MP support)
Configuration: 4 Processors, Shared bus
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Support for UMA
Processor tile
#1
——vatdateidpdate—]
<
CACHE SNOOP
< > DEVICE
- Address and Data
" L
BLIS*
*cannot be a generic interconnect!
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Readers-writers:
varying cache size

Cycles Power
= sw
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Conclusions

= Evolutionary shift from bus-based
interconnect to NoCs

=« Well underway (there’s no stopping now)
= Methodology/tooling is the main issue
= Platform challenges
= Programming abstraction
= HW/SW tradeoffs in session layer support
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