

Model Integrated Design of Embedded MPSoC

July 6, 2004 MPSOC'04

Dr. Janos Sztipanovits

Institute for Software Integrated Systems (ISIS)

Vanderbilt University

Overview

♦ MDA

An emerging paradigm for software development

♦ Domain-Specific MDA: MIC

- From DSL-s to DSML-s
- The role of transformations

♦ Example

Challenges and opportunities

- Tool Integration
- Semantic Foundation

♦ Conclusions

A Paradigm for Software Development

History:

- OMA (CORBA) → UML → MDA:
- -Object composition
 - -Models for software
 - -Models in development

Key points:

- 1. Models are not *accidental* but *essential* to system development
- 2. Models are expressed in *modeling languages*
- 3. Models are *built, analyzed and transformed* during development that lead to executables

Source: Jean Bézivin: "From Object Composition to Model Transformation with the MDA" TOOLS USA, August 2001, Santa Barbara

The Role of Modeling Languages

Development process:

- Platform Independent Model:
 - UML
 - extension with UML profiles or metamodeling
- Platform Specific Model:
 - UML
 - extension with UML profiles or metamodeling

Key points:

- 1. 4-layer metamodeling architecture
- 2. MOF is the metalanguage
- 3. Not specific to CORBA

4-Layer Meta-Model Language Architecture:

The Role of Transformations

Development process:

- <u>Platform Independent Model</u>: a view of the system from a platform independent viewpoint
- <u>Platform Specific Model</u>: a view of the system from a platform-specific viewpoint

Key points:

1.Most relevant issue: *platform-independence* (CORBA/EJB/.NET)

2.Additional (*P/S*) information is used to map PIM into a PSM

3. Transformations are models

Source: MDA Guide V 1.0.1 (www.omg.org)

Model Transformation Variants

Pattern-based:

Model merge:

Source: MDA Guide V 1.0.1 (www.omg.org)

Model-Integrated Computing: Domain-Specific MDA

Development starts with domain engineering

Understand and capture domain concepts and invariants
Develop Domain-Specific Modeling Language(s) (DSML) that capture

- Domain concepts and relationships
- Domain invariants as well formedness rules

Systems are constructed from domain-specific models

Analysis and generation are core activities

Domain-Specific Tool Suites play a key role in the development process

- Modeling environment(s) for DSML-s
- Model transformation tools
- Model analysis tools
- Model-based generators

MIC Components

MIC Approach to Metamodeling

DSML for Signal Processing: SF

Describes the structure of a design

Metamodel for SF:

Specifies the invariants in all designs (Domain architecture)

The Role of Metamodeling in MIC

DSML-s are affordable only if tools are still reusable.

"Meta-programmable" tools:

- 1. Model repositories
- 2.(Visual) modeling environments
- 3. Model transformation tools

Common underlying theme:

Tools are configured through metamodels

Metaprogrammable Tool	Metamodel
Model repository	Schema, consistency/integrity rules
Modeling editor	Abstract and concrete syntax of DSML Static semantics
Model transformation	Abstract syntax of source and target Model transformation process

MIC Approach to Model Transformations

Formal, explicit, and precise model of the transformations

Model Transformation Tool Chain

See Karsai http://www.isis.vanderbilt.edu

Example: Simplified Automotive Design Flow

Opportunities: Composable Tool Chains

- Integrated Physical/Computational Modeling and Analysis
- Model-based Generators
- Hybrid System Analysis
- Customizable (metaprogrammable) modeling tools and generators
- Open tool integration framework; configurable design flow and composable design tool chains

Solution: Open Tool Integration Framework (OTIF)

RFP is Discussed at MIC PSIG OMG

Share models using Publish/Subscribe Metaphor

Status:

- Completed, tested in several tool chains
- Protocols in OMG/CORBA
- CORBA as a transport layer
- Integration with ECLIPSE

Challenges: Semantic Anchoring of DSML-s

Conclusion

- ◆ The hard problem of building complex MPSoC embedded systems is the integrated design of physical and computational components
- ◆ Domain-specific modeling languages and model transformations are key technologies for future progress
- Model-Integrated Computing evolves to be a mature technology for the development of complex applications