System-level Modeling and Validation Solutions for Heterogeneous MP-SoCs

Gabriela Nicolescu

Ecole Polytechnique de Montréal Tel: (514) 340 4711 #5434

Fax: (514) 340 3240

Email: gabriela.nicolescu@polymtl.ca

Heterogeneous SoC (1/2)

- > Different processors (RISC, configurable processors, ...)
- Different hardware components (IPs, Memory,...)
- Different interconnects and communication protocols

Heterogeneous SoC (2/2)

- SoCs are drivers for several technologies integration
 - ITRS 2003 previsions
 - MEMS & Electro-optical components (2004)
 - Electro-biological components (2006)
 - ٠ ...
- More efficient SoC in the near future
- New CAD tools will be needed

MPSoC 2004

G. Nicolescu

Outline

- Current requirements for MPSoC
- Multi-technology benefits for MPSoCs example for optical interconnect on chip
- System-level modeling & validation for multi-technology SoCs – challenges and possible solutions
- > Conclusion

Current MPSoC platforms objectives

- Flexibility & Efficiency
 - Using increasingly Sw for function implementation
 - Parallel processing for low power and scalability
- Fast time-to-market for platform user(s)
 - Need clean programming models
 - Design platform to support programming models
 - Simple, predictable, scaleable SoC interconnect

Example: ST MPEG4 Codec trials

> 30 frame/sec, VGA resolution

Example: ST MPEG4 Codec trials

- > 30 frame/sec, VGA resolution
- Design space exploration
 - 5 processor architecture
 - 95% lines of code in S/W
 - 80% performance in H/W
 - Bandwidth: S/W = 1.2 GB/s H/W = 2 GB/s
 - 15 processor architecture
 - 96% lines of code in S/W

 - Bandwidth: S/W = 3.6 GB/s H/W = 1/GB/s

Current Requirements vs. Interconnect Solutions

- Requirements for MPEG4 codec example
 - 5 proc. arch.: S/W = 1.2 GB/s H/W = 2 GB/s
 - 15 proc. arch.: S/W = 3.6 GB/s H/W = 1 GB/s
- > 100 processors S/W > 20 GB/s
- Traditional bus
 - 0.8 GB/s at 200 MHz (burst, 100% use)
- Experimental NoCs
 - 3-6 GB/s at 200 MHz (near 100% use)
- Common to all NoC's: Long latency
- Bandwidth and latency represent a real challenge

Interconnect Challenges at 90nm and beyond

- Interconnect delay > gate delay
- Interconnect area >> gate area
- RTL + physical synthesis needed
- Increasing transmission delay
 - at 65 nm: over 5 clock cycles to transmit signal from chip end-to-end
- Deep sub-micron effects
 - crosstalk, voltage isolation, wave reflection, ...

Outline

- Current requirements for MPSoCs design
- Multi-technology for MPSoCs example for optical interconnect on chip
- System-level modeling & validation for multi-technology SoCs – challenges and possible solutions
- > Conclusion

Multi-technology (MT) and MPSoC

- MT may be exploited to overcome the presented challenges for MPSoC
 - Example optical interconnects in MPSoC
 - High bandwidth and density
 - Reduction of power dissipation
 - Relieve of a broad range of design problems experienced in current electronic systems (crosstalk, voltage isolation, wave reflection, ...)
 - Routing congestion problems alleviated

Optical interconnect on chip - reality check -

- > First results for optics joined with silicon
- Industrial applications
- Possible technological solutions
- Possible MPSoC architecture including optical interconnects

First results for optics combined with silicon

- Stanford university
 - Study showing that several effects (crosstalk, voltage isolation, wave reflection, ...) may be relieved by optics
- DARPA, IBM R&D and Agilent technologies
 - New program for development of optical-interconnect chips
- McGill University
 - Study of optical interconnect for very short distances
- > IMEC
 - Approach for adding a high density photonic interconnect layer on top of silicon IC's

Possible technological solution

- Optical devices (passives and actives) above the classical integrated circuits
- Compatible with CMOS technology

Source: I. O'Connor, LEOM, ETS Lyon

Industrial application

- Technology and Manufacturing Group, Intel Corporation
 - Optical Interconnects on chip provide better bandwidth/latency ratio comparing to classical interconnect

MPSoC 2004

15

Possible architecture

MPSoC 2004

G. Nicolescu

Possible architecture

- > Multiple signals of dif. wavelengths in the same waveguide
 - no contention, bandwidth density → 20 GB/s
 - simple, scaleable interconnect → simpler prog. models
- > 4x4 optical cross-bar 0.00425 mm² for passive network

Outlook for the design of MT-SoC

- Access to physical prototyping for multitechnology SoCs is a major challenge
 - Significant cost
 - Harder to influence standard processes
- Modeling and simulation becomes a necessary alternative in design space exploration for these systems
 - Definition of new CAD tools is mandatory
 - Definition of new specification and execution models
 - The major challenge accommodating the different application domains (optical, electrical, mechanical)

Outline

- > Current requirements for MPSoC
- Multi-technology benefits for MPSoCs example for optical interconnect on chip
- System-level modeling & validation for multi-technology SoCs – challenges and possible solutions
- > Conclusion

19

Challenges for MT-SoC Specification & Validation (1/3)

- Heterogeneous components specific to different application domains
 - Diversity of specification & execution solutions
 - Specification languages
 - Abstraction levels
 - Synchronization & comm.

- > No ideal solution for global specification
- ➤ No ideal solution for global execution

 MPSoC 2004

 G. Nicolescu

20

Objective for specification

- Define a new model for global representation of heterogeneous systems
 - Abstract interfaces hiding adaptations required for assembling different components
 - Clear separation between behavior and communication
 - Clear separation between modeling and execution

Representation Model for Heterogeneous Systems Specification

Virtual Architecture

Classical Execution Model

- Component execution models
- Interconnection execution models
- Ad-hoc simulation interfaces
- No automatic composition of heterogeneous components

- Building execution models
 - Source of errors
 - Increase the design time

New Approach: Execution Model Abstraction

- Abstract interfaces
- Abstract models for interconnections between heterogeneous components
- Automatic composition of component execution models

24

First Results: Flow for Automatic Generation of Simulation Models

First Results: Flow for Automatic Generation of Simulation Models

- Simulation interface : execution model of abstract interfaces providing adaptations between
 - Different abstraction levels
 - Different communication protocols
 - Different specification languages
- Simulation bus: interpretation of interconnect at different abstraction levels
 - > Abstract
 - > Physical
- SystemC based solution

Specification and validation of an optical switch

First Result Summary

- Cosimulation environment working
 - Eased cooperation of different teams, different cultures
 - Provided specification model
 - Writing library elements for simulation interfaces generation
 - Integrate Matlab in the cosimulation environment
 - Integrating models of optical devices in SystemC
- Debugging system models
 - Improved functionality when several mirror models joined together into an array
- Debugging overall communication
 - Early and fast global system validation

Outline

- > Current requirements for MPSoC
- Multi-technology benefits for MPSoCs example for optical interconnect on chip
- System-level modeling & validation for multi-technology SoCs – challenges and possible solutions
- > Conclusion

Conclusion

- SoC evolution
 - MPSoC architectures with large scale parallelism
 - Multi-technology integration (optical, MEMS, RF, etc.)
- These two trends may be complementary
 - Future heterogeneous MPSoC
 - Optical interconnect integration to overcome interconnect challenges
- Key contribution for heterogeneous MPSoC design
 - New EDA tools accommodating different application domains
 - Global specification models
 - Automatic generation for global simulation models
- Outlook: Global specification and validation for SoC including optical networks
 - More analysis of existing execution models
 - Deeper study of particular simulation interfaces (opto-electric & electromechanical)
 - Advanced definition, formalism for simulation interface