

IP Reuse and Integration in MPSoC: Highly configurable processors

Grant Martin

Tensilica

MPSoC 2004: 8 July 2004

- "Static IP" Creation and Integration
- "Highly Configurable IP" Creation and Integration
- Emerging Standards

VSI Design Methodology: IP Creation tensilica and Integration

Evaluating the Quality of "Static IP": e.g. The VSIA Quality IP Assessment Metric

VirtualComponentName	Scoring Summaries	
VCVendorCompany	IP Ease of Reuse	0%
' '	Design & Verification Quality	0%
	IP Maturity	0%
Copyright © 2003 VSIA	Vendor Assessment	
1,7 0	Total	0%
Summary Report	Design Quality	0%
Beta Release	Verification Quality	0%
Technical Support	Answers that are unacceptable	0
Answe	rs that are acceptable but add risk	0
	Answers that are acceptable	0
	Total	0
IPNAME	VirtualComponentName	
SupplierName	VCVendorCompany	
Select the type of block you are evaluating	mixed-signal IP	
Are you the IP developer or the end-user	Spreadsheet reviewer Yes	
Are you interested in a traffic light report	Score	%
IP Maturity Assessment	Score 0	0%
Vendor Assessment	0	0%
IP Ease of Reuse (IP Integrator's View)	0	0%
Documentation Quality	0	0%
Digital Soft IP: Documentation Quality Digital Verification IP: Documentation Quality	0	0% 0%
Embedded Software: Documentation Quality	0	0%
Analog IP: Documentation Quality	0	0%
Ease of Integration	0	0%
Digital Soft IP: Reusability	0	0%
Digital Verification IP: Reusability	0	0%
Embedded Software: Reusability	0	0%
Analog IP: Reusability	0	0%
Design & Verification Quality (IP Developers' View):	0	0%
Design Quality Design Quality	0	0%
Digital Soft IP: Design Quality	0	0%
Digital Verification IP: Design Quality	0	0%
Embedded Software: Design Quality	0	0%
Analog IP: Design Quality	0	0%
Verification Quality	0	0%
Digital Soft IP: Verification Quality	0	0%
Digital Verification IP: Verification Quality	0	0%
Embedded Software: Verification Quality	0	0%
Analog IP: Verification Quality	0	0%

tensilica IP Qualification

- Some industry standards MORE, OpenMORE, VSIA Quality DWG (Quality IP Metric)
- Self-applied: publicity
- Lack of 3rd party certification
- Many organisations certify incoming IP quality themselves
- 3rd party providers rely more on reputation than facts their customers must provide the facts:
 - "Measuring IP quality costs time and effort. Many of the large system and semiconductor companies have spent the last seven years creating in-house IP quality procedures, and a number of them claim it costs as much as 3 manmonths to verify the quality of one single piece of IP."
 - Larry Cooke, "Why we don't have IP quality yet", EEDesign (online), July 24, 2003

Relevance to Highly Configurable IP must be considered

- Qualify the Generated IP or Qualify the Generation Process?
- If you use a lot of generated IP, you should think about Process not Results

Conclusions:

- There is no current substitute for inspecting, QA'ing and certifying incoming 3rd party IP yourself
- The reputation of the supplier is a key component of IP Quality
- For highly configurable IP, the generation process controls the output quality

Configurable vs. Relatively static Processor IP

Configurable Processor IP is the result of a configuration process

- Not a static deliverable
- Not a lightly configured design ie. Choosing one of a few pre-defined configurations, or choosing parameter values from ranges for a few simple option

This process is driven by specifying a configuration in some kind of GUI

- Many degrees of variability
- Many interlocking options
- Need to capture valid combinations and ranges of options in complex rules
- Users require the support of some kind of estimators to give them a reasonably accurate feeling for the key characteristics of the output of the process
 - E.g. power, area (cost), performance

Ideally, the process should run in a few hours at most to provide rapid feedback and iteration or design space exploration

 Output deliverables must then allow complete implementation and verification in standard EDA flows

Examples of possible coarse-grain configuration options for processors

Control & State

- Register size
- Interrupts / priority
- Timers
- Debug breakpoints
- Trace port
- Boolean registers
- Processor ID register
- Scan & clocking options

Execution Units

- Floating point
- DSP Options
 - 16 bit MAC
 - Special DSP hardware (eg. SIMD)
- Multiplier, 16 or 32 bit

Memory and Interface

- Cache Instruction & Data
 - Size, e.g. to 32KB, 1 to 4 way
 - Writeback or Write Thru (Data)
 - Line Locking (Data & Instruction)
- Local RAM/ROM
 - Instruction & Data
- Memory protection / MMU
- Local Memory Interface ports with flow control
- Processor bus Interfaces
 - Include / Exclude (optional)
 - 32, 64 or 128 bit interface
 - Write Buffer depth
 - Incoming Request (DMA) Support

Support of generation process with estimators

- ✓ With a huge variety of coarse-grained configuration options, users need basic feedback on the likely outcome of the generation process
 - In terms of power, performance, area (cost)
- Estimators must be based on parameter sweeps over technology choices.
 - With near-infinite numbers of possible configurations, must sweep over a suitable subset of possibilities
 - Corner cases
 - Ends of parameter ranges
 - Build estimators and predictors, and understand montonicity and sensitivity
 - As an example, Tensilica uses a database compiled from >200 postlayout (full place and route) designs for Xtensa 1050 core. This uses a compilation of 3rd party libraries representing several commercial COT foundry processes.

Additional configuration possibilities for processors

- Instruction extensions to adapt configurable processors much more closely to applications
 - "fine-grain" configuration, complementing "coarse-grain" options
- A variety of choices
 - Some offer co-processor creation partial implementation of intensive data processing portions of algorithms (e.g. loop nests)
 - May allow creation of several coprocessors
 - Loosely coupled to main processor instruction processing
 - Often processor core will stall while coprocessors operate
 - As a contrasting example, the Tensilica T1050 and LX cores allow instruction extensions to be compiled into dedicated hardware deeply embedded in the main processor datapath
 - These are then directly supported in the generated software toolkit
 - Instruction extensions are described in a special format called TIE which supports both structural and semantic description mechanisms for a particular instruction, which may be multi-cycle

Required output deliverables from processor configuration

SW development environment

- Compilers C/C++, and SW libraries
- Operating System support
- Links to Integrated Development environments (IDEs) including debugging, build processes, configuration management, profiling, etc.
- As an example, Tensilica offers an IDE environment based on Eclipse called xPlorer (users also are able to use other IDEs); optimised compiler generation (xcc), and links to standard OS's (e.g. WindRiver)

System level modelling and debugging

- Instruction Set Simulator (ISS)
- Multi-core system modelling environment (usually C/C++-based, or SystemC)
- HW-SW Co-simulation model support
- Emulation or rapid prototyping support
- For example, the Tensilica generation and build process produces:
 - ISS in standalone mode, in IDE (xPlorer), and in multi-core C++ system modelling environment (XTMP) which also can be interfaced with SystemC
 - Support for Mentor Seamless HW-SW cosimulation
 - Support for FPGA-based emulation boards

Additional required deliverables – implementation and verification flows

- Implementation and verification of configured IP requires support for highly automated flows
 - Synthesis, placement, routing, verification
 - Need to rely on standard leading EDA tools
 - Must be very responsive to customer pull on flows without spending large support efforts on small minority flows
 - Similar issue on support for design languages support most commonly used; cannot leap on new languages (e.g. SystemVerilog) until sufficient customer pull
 - Quality of output is paramount, and thus support for advanced verification methods important
- As an example, Tensilica supports Verilog and VDHL outputs, Synopsys synthesis, Synopsys and Cadence P&R and timing, Synopsys, Cadence and Mentor simulators.
 - In addition, support for extraction, power analysis, test, co-simulation, equivalence checking, assertion based verification, and testbench languages using leading EDA suppliers in each category.

Evaluating the Quality of Highly Configurable IP

Programmers' Reference Manual	
Does this component contain a programmable instruction set ?	y/n
If this IP block is instruction programmable, then a software reference manual is required. Is a software reference manual available?	y/n
Memory organization	y/n
Instruction Registers	y/n
Operand Size and Addressing	y/n
Data types	y/n
Instruction Set	y/n
Procedure Calls, Interrupts, Exceptions	y/n
Input-Output Processing	y/n
Does this component contain a programmable register set ?	y/n
Is there a register map section present in the hardware reference manual or a separate document available that describes how to program the registers?	y/n

(Extracts From VSIA QIP Assessment Metric)

Ease of Integration (IP Integrator View)		
Configurability and Parameterization		
Is the IP configurable?	y/n	
Is the IP designed to support instance by instance configurability?	y/n	
Is the configuration accomplished thru the establishment of parametric calling	y/n	
routines rather than modifying hard coded constants?		
Are configuration examples provided?	y/n	
Are all configuration parameters clearly defined and documented?	y/n	

- Current assessments are geared towards static IP, not highly configurable processors
- Current methods evaluate outputs, not process for configuration, generation and use
- Users need to adapt these methods in assessing suppliers of highly configurable IP

The Business of IP Integration: Existing and Emerging Standards, Companies and Organisations

Design And Reuse

The Calabyst of Collaborative SoC Design through SIP Exchange

What are some of these organisations doing?

- ✓ VSIA standards for IP creation, interchange and use
 - VSIA IP Quality metric already discussed
 - VSIA restructuring (May-June 2004) has kept Quality focus
- VCX was going to be a "SOC Exchange" (for IP)
 - Becoming a software company
- FSA collaborating with VSIA on IP quality
 - Intellectual Property Committee
- Open SystemC International (OSCI)
 - Transaction Level Modelling Standards
- Open Core Protocol International Partnership (OCP-IP)
 - A particular bus/interface standard based on SONICS
- SPIRIT
 - Standards for defining IP and Platform "Meta-Data"

The SPIRIT Consortium The SPIRIT Consortium

SPIRIT

- <u>S</u>tructure for <u>P</u>ackaging, <u>I</u>ntegrating and <u>R</u>e-using <u>I</u>P within <u>T</u>ool-flows
- A consortium of leading companies in the EDA, IP, system and semiconductor industries

Aim

- To develop industry standards
 - · Ease integration of semiconductor IP into Systems
 - Enable the interoperability of tools for IP integration

SYNOPSYS*

SPIRIT concept

SYNOPSYS°

Source: SPIRIT Press Presentation, SAME, October 2003

Some Observations about Standards

VSIA

- I think its day is done accomplished what it could
- FSA IP committee may hold more industry credibility
- Restructuring May-June 2004 may or may not succeed but reduced VSIA scope

OSCI

- Valuable but seems slow and politics is mounting
- TLM work has strong potential for system-level IP models but its late
 - (at DAC 2004, implication of 2.1 release this summer and TLM by Fall 2004)

SPIRIT

- Meta-data interchange standard in XML is potentially useful
- Web site talks about first standard out end of 2003.....the clock is ticking. At DAC 2004, first phase (RTL) promised end October 2004.

In all these cases – the absence of agreed industry standards perpetuates ad-hoc solutions – at a cost

- Tensilica had to create its own C/C++-based Transaction Level Modelling System simulation capability
- We also have created something which has the flavour of part of the SPIRIT concept for internal use

tensilica Conclusion

- IP reuse remains one of the big design challenges
- Quality is issue number one
 - But quality has to be assessed by integrators
 - Reputation is possibly the best guide today
- Methods for static IP need considerable adaptation to cope with highly configurable IP
- Standards have a role
 - BUT standards organisations seem to be bogging down
 - Overly ambitious
 - The politics and economics of EDA seem to trump the interests of the IP creators and users
 - Unclear that this will change
 - · If not, ad-hoc proprietary solutions must continue to be invented