

MPSOC Architectures for Computing for Imaging

Thierry Collette, Ph.D.

CEA LIST

Head of Architecture and Design Department thierry.collette@cea.fr

Embedded Computing: a New Area

Evaluation Criteria

Design dilema of Embedded Computing Solutions

Different Architectures

Computing for Imaging at CEA LIST

With more than 20 years of experience in computer design for image processing

Sympati 1 µm

Symphonie $0.5 \mu m$

Symétrie $0,25 \, \mu m$

Carvision 65 nm

SCMP concept (MPPA, TeraOps, PTF2012)

eISP

2010 1990 1995 2000 2008 2009

Line processor array Line processor array

very similar to IMAP (NEC)

128 SIMD 16bits-PE 256 SIMD 32bits-PE for image processing for image processing

> -Network with message -10 Millions of transistors passing inter-PE

- -Hardware acceleration -Fault tolerance mechanisms of floating point operations
- -16 PE multi-chip modules

Supercomputer Several thousands of chips

- 1 chip:
- -Reconfigurable capacities
- 250 MHz
- 8 W

Image processor for automotive **Applications** ST collaboration

- Pedestrian detec.
- Blind spot
- Lane departure
- Parking assist.

Multicore architecture for embedded applications

- - based on SCMP
 - **CEA** concepts - 1 Tera
 - Operations /s targeted

Processor Array VLIW + SIMD

- low power

- -Low surface
- -High flexibility

Computing for Imaging Activities at CEA LIST

- Advanced Driver Assistance System :
 - ADAS for transportation (cars, tramways, buses...)

Automotive ADAS

Pedestrian Detection (Pattern Matching)

CarVision MPSoC Architecture

Nomadic System Roadmap

- Constrained by high volumes and low cost for consumer applications:
 - ✓ Performance needs of 100/200 GOPS for HD video
 - ✓ Smallest footprint (avoid image memories): surface is cost
 - ✓ Consumption well under 500mW
 - √ High reusability, then flexibility needs

From dedicated HW to programmable and reconfigurable accelerators

eISP: Embedded Image Signal Processor

elSP main features :

Clusters of programmable processors

- ✓ Based on a tiny VLIW processor
 - 5 kGates 4 mW
 - 0.02 mm² area in 65nm-technology
 - 400 MIPS at 200 MHz
- ✓ SIMD clusters of processors
- ✓ Adress generation & control handled by specific units
- Configurable chaining of computing elements
- ✓ No need for the programmer to think parallel
- Sizing Example for preprocessing HD Video 1080p (1920x1080 25FPS)
 - √ 6 clusters of 6 processors
 - ✓ 1,3 mm2 (memory lines included) in 65nm TSMC
 - √ 250 mW at 200 MHZ 14 GOPS peak

PACS: Programmable Architecture for CMOS Sensor

Objectives

- Taking advantage of 3D-stacking technologies to integrate both analog and digital computing resources in/near the FPA for videosurveillance applications
- Revisiting the VideoPipe
- Parallel architecture behind the FPA
 - SIMD clusters of processors with distributed memory banks
 - Adaptation of the processing resources to the size of the ROI

Smart Imaging for Advanced Perception

Future: 3D-Stacked Vision System

Sensor including analog operators and via shared between pixels

Serie of AD convertors to output several pixel flows in parallel + bio-inspired preprocessing (nanotechnology)

Digital parallel processor designed in an advanced technology

MPSOC architectures for Computing for Imaging

Thierry Collette, Ph.D.

CEA LIST

Head of Architecture and Design Department thierry.collette@cea.fr

