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Veyron project 

“1000 truly usable cores” 

3D IC because when Moore’s Law ends, go to S’mores Law 



The State of Simulation 

• System complexity is 
outpacing simulation 
capacity 

• Cannot perform analysis at 
scale 
– 32 cores: barely, 1000 cores: 

fahgettaboutit 

– The problem will get worse, 
faster 

• GT actively working on 
solutions in this space (but 
not the topic of this talk…) 
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Optimized for throughput 
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Manycore: 
Optimized for thread-level 
parallelism 
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Us vs. Them, again… 



Famous us-vs-them in architecture wars 

• Von Neumann vs. Dataflow 

• CISC vs. RISC 

• Superscalar vs. VLIW 

• Shared memory vs. Message passing 

• Manycore vs. Multicore? 

• There’s a trend in history that we ignore at our 

own peril… 
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Von Neumann vs. Data flow parallelism 

• The fight: 

– Data flow extracts parallelism without the need for 
programmer-specified synchronization 

• but… only a subset of languages fit nicely into the model 

– Von Neumann continued sequential programming 
model using existing imperative languages 

• but… parallel programming notoriously complicated (“barrier 
everywhere” phenomenon) 

• The winner: 

– Von Neumann: changing programmers harder than 
changing hardware 
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RISC vs. CISC and then 

 Superscalar vs. VLIW 
• The fight: 

– RISC (vertical microcode exposed) and VLIW 
(horizontal microcode exposed) lead to simpler 
hardware 

• but… onus on the programmer and/or compiler 

– CISC (microcoded) and Superscalar (parallelism 
extracted in hardware) provide code compatibility 

• but… higher power, less parallelism extracted overall 

• The winner: 
– RISC vs. CISC rendered irrelevant after P6 due to 

compatible installed base of x86 code 

– Superscalar won over VLIW 
• Last hold out of VLIW hitting code compatibility issues 
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Shared memory vs. message passing 

• The fight: 

– Message passing enabled much higher numbers of 
processing elements 

• but… programmers have to move data to the computation 

– Shared memory enabled easier programming models 
• but… memory coherence got complicated 

• and eventually foist it on the programmer again via weaker 
consistency models 

• The winner: 

– Shared memory for all but CSE people 
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What’s the fight about for manycore? 

• Programmers dictate our architectures 

• Shared memory is easier to program 

– Limited shared memory (regions, clusters) is MPI 
under a different name 

• Oft heard claim: Manycore is limited to “friendly” 
applications, not general purpose 

– Mainly because grew out of GPUs, but note that 
“General purpose” is always a moving target 

• Ah, but 1000 coherent cores are hard to do in 
hardware… 

WDDD-09 
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DSM vs. Multi/Manycore cache coherence 
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NUCA or LLS: Static address => LL$ map 

COCA or LLP: Dynamic => LL$ map 



NUCA vs. COCA 

• NUCA (Non-uniform cache architecture) 

– No duplication of a line: only stored in one place 

– Bad: that ‘place’ may be the wrong place, sharing 
prohibitive 

– Soln: Move data between NUCA banks 

• COCA (Conventionally organized cache 
architecture) 

– Good: lines near where they’re needed 

– Bad: Duplicates a line, LL$’s need to be kept coherent 

– Soln: (Directory) coherence 
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Directory-shared (DS) vs Directory-private (DP) 
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DS vs DP (cont) 

• DS is the NUCA of directory structures 
– Good: No duplication of a dir entry: only stored in one 

place, easy to find an entry 

– Bad: that ‘place’ may be the wrong place, lots of 
network traffic 

– Soln: Move dir entries– CAN’T 

• DP is the COCA of directory structures 
– Good: dir entries near where they’re needed 

– Bad: Duplicates a dir entry, directories need to be kept 
coherent, large amount of area/space, no go-to “home” 
for a first time dir-miss 

– Soln: coherence – of directories 

• Or a hybrid… 
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DS-DP 64-Core Tessellation  
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• 4 Neighborhoods grouped by color 

• Per Neighborhood: 1 neighborhood directory 
(dir)16 cores (c), and 1 memory controller (m) 
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Average miss latency 
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Distribution of message latencies 
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Veyron heterogeneity 



Core selectability 



Why? 

• “Powerful” facts 

– Custom design is vastly lower power than general 
purpose 

– General purpose is more … general purpose 

• Select between customized, application-specific 
design layers in the 3D stack 

• Old idea, but prior approaches to this failed 
because: 

– Multiple packages, one per custom design 

– Cross chip => pin crossing power burn 

– Cross chip => data in wrong place 



Veyron: The cores 

YOU ARE HERE 



Feature wish list for the cores 

• Scalable issue widths 

• Function unit selectability 

• ILP rich 

• Small 

• Synthesizeable …by graduate students 

• Plug-compatible FUs 

• ISA compatible across family 

• Ability to use open source compilers, debuggers, 
libraries 

• Low power features (turn units on/off 
programmatically) 



CLAW 

• Clustered Length-Adaptive Word: 

– Clusterable in-order processor 

– Originally designed for low-power embedded, effort 
started in 2004 by Balaji Iyer, funded by Qualcomm, 
NSF, Redhat 

– ISA is a clustered VLIW extension of OpenRISC 

• Not a “paper design” 

– Synthesizeable Verilog 

• 0.15mm2 in 45nm 

– Complete compiler tool chain: GNU tools, uLibC, GCC 
4.1, (including Treegion scheduler, Haifa vectorizer) 



CLAW architecture 

• 2 operands/cluste 

• Scalable to multiple 
clusters: 2, 4, 6 issue 

• 32-entry RFs 

• 2 ALUs, Load/Store 

• Plug in IMAC, FP, 
SIMD 

• Five+ stage pipeline: 
IF, ID, RR, EX1, (EX2), 
WB 

• Multiple hardware 
threads 

Instruction 
fetch 

Instruction 
decode 

IMAC LS IALU FP SIMD 

RF 
32x32b 

WB 



Place and route of CLAW in 45nm 



Veyron: The software 

YOU ARE HERE 



Benchmarking Manycore 

• Throughput benchmarking for multiple processors 
– Good: 

• Easy to use all processors 

– Bad: 
• “representative” of future applications? 

• system measurement issues 

• Multi-threaded programming models for design 
comparison 

• e.g. Splash-2, PARSEC 

– Good: 
• Easier measurement techniques 

– Bad: 
• Harder to effectively use all processors 
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Previous Scalability Assumptions 

• PARSEC: 
– Measure inherent concurrency based on 

executed instructions in parallel and serial 
code sections 

– Delays on contended locks and load 
imbalance are neglected 

– CMP$im used to model a CMP cache 
hierarchy (application level only) 

• Splash-2: 
– Measure actual concurrency on an 

abstract machine 

– Every instruction completes in 1 cycle 

• Both are interested in the inherent 
program characteristics rather than 
performance 
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Splash-2 Scalability with OS 
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Average speedup 

2 1.718
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Threads vs. Speedup 



PARSEC Scalability with OS 
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Average speedup 
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Performance Comparison 

• Average scalability compared against theoretical 
projections 
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“Scalability” 

• Scalability saturation and even degradation was 
observed…why? 

• Potential reasons: 
– Microarchitectural efficiency 

– Inherent workload parallelism 

– Initialization code dominates 

– Synchronization efficiency 

– OS scheduling / context switch overhead 

– OS accounting / memory management 

– Shared library behavior 
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PARSEC Deconstruction 
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Program: 57.8%     OS: 39%     Shared libraries: 2.76% 



PARSEC Synchronization 
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Splash-2 Synchronization 
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“Parallel” benchmarks 

• These benchmarks do not scale to 1000 cores! 

• Synchronization is the main limiter of scalability 

– Barriers and condition variables major contributors 

– Mutexes often uncontested, but will change 

• As the core counts increase, every fractional 
percentage of overhead will be relevant to 
scalability evaluation 

• Synchronization 

– Mutexes will be increasingly important at 1000 cores 

– OS interaction (< 3%) will matter (big red arrow) 

WDDD-09 
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Now We Have a Benchmark Catch 22 

• Architecture is benchmark-driven 

• The benchmarks we have are not scalable to 
1000 cores 

– Barriers and condition variables major contributors 

– Mutexes often uncontested, but will change 

– OS interaction (< 3%) will matter (big red arrow) 

• Solutions? 

– Expand the applications to new spaces 

– Stop treating benchmarks as “black boxes” – architects 
must become computational scientists as well 
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Summary: Georgia Tech Veyron project 

• Design, simulate and 
(hopefully) construct a 
1000 core general 
purpose manycore 

• What’s new: 
– Programmers matter 

– 3D tech 

– Coherent 1000 nodes in 
hardware 

– COCA 

– Heterogeneous cores 
with a common ISA for 
low power 
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QUESTIONS? 

END 
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