
Manycore: Will we learn from the

past?

Tom Conte conte@gatech.edu

College of Computing

Georgia Institute of Technology

1

Team

• Jesse Beu, Paul Bryan, Jason Poovey, Chad
Rosier

• Faculty directly involved: Wayne Wolf, Sudha
Yalamanchili, Milos Prvulovic, Santosh Pande,
Nate Clark, Hyesoon Kim

• Other interested faculty…

– Eric Rotenberg (NC State)

– Hsien-Hsin Sean Lee (GT ECE)

– Sung Kyu Lim (GT ECE)

– Gabriel Loh (GT CS)

2

Veyron project

“1000 truly usable cores”

3D IC because when Moore’s Law ends, go to S’mores Law

The State of Simulation

• System complexity is
outpacing simulation
capacity

• Cannot perform analysis at
scale
– 32 cores: barely, 1000 cores:

fahgettaboutit

– The problem will get worse,
faster

• GT actively working on
solutions in this space (but
not the topic of this talk…)

System complexity

Simulation capacity

E
v
e
n
ts

/s
e
c

Time

Multicore vs. manycore

BIG core, as

large as power

wall allows,

good single-

thread

performance

BIG core, as

large as power

wall allows,

good single-

thread

performance

BIG core, as

large as power

wall allows,

good single-

thread

performance

BIG core, as

large as power

wall allows,

good single-

thread

performance

Smaller

core

Decent single thread performance, in-order, 2 issue
Full out of order, 4-6 issue

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Smaller

core

Multicore:
Optimized for throughput
parallelism

Manycore:
Optimized for thread-level
parallelism

‹#›

Us vs. Them, again…

Famous us-vs-them in architecture wars

• Von Neumann vs. Dataflow

• CISC vs. RISC

• Superscalar vs. VLIW

• Shared memory vs. Message passing

• Manycore vs. Multicore?

• There’s a trend in history that we ignore at our

own peril…

6

Von Neumann vs. Data flow parallelism

• The fight:

– Data flow extracts parallelism without the need for
programmer-specified synchronization

• but… only a subset of languages fit nicely into the model

– Von Neumann continued sequential programming
model using existing imperative languages

• but… parallel programming notoriously complicated (“barrier
everywhere” phenomenon)

• The winner:

– Von Neumann: changing programmers harder than
changing hardware

7

RISC vs. CISC and then

 Superscalar vs. VLIW
• The fight:

– RISC (vertical microcode exposed) and VLIW
(horizontal microcode exposed) lead to simpler
hardware

• but… onus on the programmer and/or compiler

– CISC (microcoded) and Superscalar (parallelism
extracted in hardware) provide code compatibility

• but… higher power, less parallelism extracted overall

• The winner:
– RISC vs. CISC rendered irrelevant after P6 due to

compatible installed base of x86 code

– Superscalar won over VLIW
• Last hold out of VLIW hitting code compatibility issues

8

Shared memory vs. message passing

• The fight:

– Message passing enabled much higher numbers of
processing elements

• but… programmers have to move data to the computation

– Shared memory enabled easier programming models
• but… memory coherence got complicated

• and eventually foist it on the programmer again via weaker
consistency models

• The winner:

– Shared memory for all but CSE people

9

What’s the fight about for manycore?

• Programmers dictate our architectures

• Shared memory is easier to program

– Limited shared memory (regions, clusters) is MPI
under a different name

• Oft heard claim: Manycore is limited to “friendly”
applications, not general purpose

– Mainly because grew out of GPUs, but note that
“General purpose” is always a moving target

• Ah, but 1000 coherent cores are hard to do in
hardware…

WDDD-09
10

DSM vs. Multi/Manycore cache coherence

11

PE

MU

PE

MU

…

…

PE

MU

DSM

NUMA: Static address => MU map

COMA: Dynamic => MU map

PE

LL$

PE

LL$

…

…

PE

LL$

Manycore

NUCA or LLS: Static address => LL$ map

COCA or LLP: Dynamic => LL$ map

NUCA vs. COCA

• NUCA (Non-uniform cache architecture)

– No duplication of a line: only stored in one place

– Bad: that ‘place’ may be the wrong place, sharing
prohibitive

– Soln: Move data between NUCA banks

• COCA (Conventionally organized cache
architecture)

– Good: lines near where they’re needed

– Bad: Duplicates a line, LL$’s need to be kept coherent

– Soln: (Directory) coherence

12

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

Directory-shared (DS) vs Directory-private (DP)

dir dir dir dir dir dir

dir dir dir dir dir dir

dir dir dir dir dir dir

dir dir dir dir dir dir

dir dir dir dir dir dir

dir dir dir dir dir dir

DS:
Home for
dir of
fixed
range of
addrs

DP:
Home for
dir cache
of larger
(off-chip)
dir

DS vs DP (cont)

• DS is the NUCA of directory structures
– Good: No duplication of a dir entry: only stored in one

place, easy to find an entry

– Bad: that ‘place’ may be the wrong place, lots of
network traffic

– Soln: Move dir entries– CAN’T

• DP is the COCA of directory structures
– Good: dir entries near where they’re needed

– Bad: Duplicates a dir entry, directories need to be kept
coherent, large amount of area/space, no go-to “home”
for a first time dir-miss

– Soln: coherence – of directories

• Or a hybrid…
14

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

C C C

DS-DP hybrid

C C C

C ND C

C C C

ND

Neighborhood

of Nodes

ND

Neighborhood

Directory

Coherence Requests

DS-DP

Each ND
assigned
a range
of addrs
for first
time miss

17

DS-DP 64-Core Tessellation

m c c c c c c c c

c c dir c c c c c c

c c d c c c dir c c

c c c c c c c c m

m c c c c c c c c

c c dir c c c c c c

c c c c c c dir c c

c c c c c c c c m

• 4 Neighborhoods grouped by color

• Per Neighborhood: 1 neighborhood directory
(dir)16 cores (c), and 1 memory controller (m)

C1

ND0 HD

1. GETS

2. ND Miss 3. GETS 4. HD Miss /

Allocate Entry

MC

5b. REPLICA_REPLY

5a. FWD_GETS

6a. DATA

6b. Allocate Replica

Neighborhood 0 Neighborhood 1

Example 1: First Time Miss

C – Core

ND – Neighborhood Dir
HD – Home Dir (DS)

MC – Memory Controller

C1

ND0

2. ND Hit /

Add Sharer(s)

C2

C3

1a. GETS
1b. GETS

Neighborhood 0

3a. FWD_GETS

4a. DATA

4b. DATA

Example 2: Neighborhood Dir Hit

3b. FWD_GETS

C

ND

ND ND

ND

1. GETX

2a. DIR_INV 2b. DIR_INV

3. INV

3. INV 3. INV 3. INV

3. INV

3. INV

3. INV

3. INV

Example 3: GET eXclusive invalidation

Average miss latency

21

Distribution of message latencies

22

Veyron heterogeneity

Core selectability

Why?

• “Powerful” facts

– Custom design is vastly lower power than general
purpose

– General purpose is more … general purpose

• Select between customized, application-specific
design layers in the 3D stack

• Old idea, but prior approaches to this failed
because:

– Multiple packages, one per custom design

– Cross chip => pin crossing power burn

– Cross chip => data in wrong place

Veyron: The cores

YOU ARE HERE

Feature wish list for the cores

• Scalable issue widths

• Function unit selectability

• ILP rich

• Small

• Synthesizeable …by graduate students

• Plug-compatible FUs

• ISA compatible across family

• Ability to use open source compilers, debuggers,
libraries

• Low power features (turn units on/off
programmatically)

CLAW

• Clustered Length-Adaptive Word:

– Clusterable in-order processor

– Originally designed for low-power embedded, effort
started in 2004 by Balaji Iyer, funded by Qualcomm,
NSF, Redhat

– ISA is a clustered VLIW extension of OpenRISC

• Not a “paper design”

– Synthesizeable Verilog

• 0.15mm2 in 45nm

– Complete compiler tool chain: GNU tools, uLibC, GCC
4.1, (including Treegion scheduler, Haifa vectorizer)

CLAW architecture

• 2 operands/cluste

• Scalable to multiple
clusters: 2, 4, 6 issue

• 32-entry RFs

• 2 ALUs, Load/Store

• Plug in IMAC, FP,
SIMD

• Five+ stage pipeline:
IF, ID, RR, EX1, (EX2),
WB

• Multiple hardware
threads

Instruction
fetch

Instruction
decode

IMAC LS IALU FP SIMD

RF
32x32b

WB

Place and route of CLAW in 45nm

Veyron: The software

YOU ARE HERE

Benchmarking Manycore

• Throughput benchmarking for multiple processors
– Good:

• Easy to use all processors

– Bad:
• “representative” of future applications?

• system measurement issues

• Multi-threaded programming models for design
comparison

• e.g. Splash-2, PARSEC

– Good:
• Easier measurement techniques

– Bad:
• Harder to effectively use all processors

32

Previous Scalability Assumptions

• PARSEC:
– Measure inherent concurrency based on

executed instructions in parallel and serial
code sections

– Delays on contended locks and load
imbalance are neglected

– CMP$im used to model a CMP cache
hierarchy (application level only)

• Splash-2:
– Measure actual concurrency on an

abstract machine

– Every instruction completes in 1 cycle

• Both are interested in the inherent
program characteristics rather than
performance

33

Splash-2 Scalability with OS

34

Average speedup

2 1.718

4 2.188

8 3.105

16 3.213

32 3.501

Speedup times
derived from
wall clock time

Threads vs. Speedup

PARSEC Scalability with OS

35

Average speedup

2 1.797

4 3.064

8 4.694

16 5.630

32 5.585

Threads vs. Speedup

Performance Comparison

• Average scalability compared against theoretical
projections

36

Processors Projected
Speedup

Measured
 Speedup

2 1.831 1.797

4 3.183 3.064

8 5.162 4.694

16 7.678 5.63

32 10.36 5.585

Processors Projected
Speedup

Measured
Speedup

2

4

8

16

32

PARSEC Splash-2

“Scalability”

• Scalability saturation and even degradation was
observed…why?

• Potential reasons:
– Microarchitectural efficiency

– Inherent workload parallelism

– Initialization code dominates

– Synchronization efficiency

– OS scheduling / context switch overhead

– OS accounting / memory management

– Shared library behavior

37

PARSEC Deconstruction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

bodytrack dedup facesim fluidanimate freqmine streamcluster vips x264

shared

OS

program

WDDD-09
38

Program: 57.8% OS: 39% Shared libraries: 2.76%

PARSEC Synchronization

39

Splash-2 Synchronization

40

“Parallel” benchmarks

• These benchmarks do not scale to 1000 cores!

• Synchronization is the main limiter of scalability

– Barriers and condition variables major contributors

– Mutexes often uncontested, but will change

• As the core counts increase, every fractional
percentage of overhead will be relevant to
scalability evaluation

• Synchronization

– Mutexes will be increasingly important at 1000 cores

– OS interaction (< 3%) will matter (big red arrow)

WDDD-09
41

Now We Have a Benchmark Catch 22

• Architecture is benchmark-driven

• The benchmarks we have are not scalable to
1000 cores

– Barriers and condition variables major contributors

– Mutexes often uncontested, but will change

– OS interaction (< 3%) will matter (big red arrow)

• Solutions?

– Expand the applications to new spaces

– Stop treating benchmarks as “black boxes” – architects
must become computational scientists as well

42

Summary: Georgia Tech Veyron project

• Design, simulate and
(hopefully) construct a
1000 core general
purpose manycore

• What’s new:
– Programmers matter

– 3D tech

– Coherent 1000 nodes in
hardware

– COCA

– Heterogeneous cores
with a common ISA for
low power

43

QUESTIONS?

END

44

