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Emergent Phenomenon: GPU 
Computing 
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 S. Green, “GPU Physics,” SIGGRAPH 2007 GPGPU Course. 
http://www.gpgpu.org/s2007/slides/15-GPGPU-physics.pdf
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Accelerated Computing: 
Today

• Contemporary Accelerators: GPUs, Cell, Larrabee
• Some Challenges:

1. Inflexible parallel programming models 
2. Lack of conventional memory model
3. Irregular parallel apps difficult to scale
4. Significant effort in optimizing code

• Effect on Development: Unattractive time to solution

33 2009 (C) Sanjay Patel

Programmable data parallel accelerator: 
HW entity designed to provide advantages 
for a class of apps including: higher 
performance, lower power, or lower unit 
cost relative to a general-purpose CPU.



 26/08/2009  2009 (C) Sanjay Patel

Accelerated Computing: 
Tomorrow

• Challenge: Performance vs. app 
development effort

• Accelerator Trend: Increasing 
programmability

– While still providing performance

Spectrum of Programmable Accelerators
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(less)                 ease of 
Programmability                 (more)

FPGA              GPU, Cell             Rigel, 
x86 multicore
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Accelerated Computing: 
Metrics

• SIMD/Vector

• Threading

• Memory management

• Programming model support

• Performance portability

55

• FLOPS/mm2 
(throughput)

• FLOPS/Watt (power)
• FLOPS/Programming 

Effort
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Project Orion
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Applications, Programming 
Environments, and Architecture 

for 1000-core Parallelism 
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Rigel Design Goals: 
Clean-slate architecture 

– Generalized computation accelerator oriented towards data 
parallel applications

• Focus on emerging visual computing and interactive HPC applications

– Maximize objectives

• Perf/area, Perf/watt (ops/joule), Perf/effort

– Support for work queue-based data parallel programming models

• E.g., CUDA, OpenCL, OpenMP, Ct, Cilk, etc

• Task-based models starting to get commercial traction
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Work Queue-based 
Data Parallel Programming 
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Pattern: Bulk-Synchronous 
(BSP)

• Compute and communication phases separated by barriers

• High degree of read-sharing within interval

• Private working set, minimal write sharing within intervals

 2009 (C) Sanjay Patel99 of 23

3. Barrier 
    Synchronization

1. Computation

2. Communication

�

…Repeat…

Interv
al
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Motivation: Sharing Patterns
VISBench 

(x86)
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RTM Kernels 
(Rigel)

• Output: Produced before barrier, read after
• Conflict: Written by T1 and read by T2 within an 

interval
• Private: Read/written by only one task
• Input: Shared data read by T1, written by T2 in 

prev. interval
[VISBench: Mahesri et. al, Micro 
2008]
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Low-level Programming 
Interface
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Design Issues: Clean-slate 
architecture 
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• Efficiently target wide class of (irregular) parallel apps

• Maximize programmability and productivity

1. Execution Model: ISA, SIMD vs. MIMD, VLIW, OoOE, MT

2. Memory Model: Caches, scratchpad, ordering, coherence

3. Work Distribution:  Scheduling, SW/HW spectrum

4. Synchronization:  Scalability, influence on prog. model

5. Locality Management: HW/SW, implicit/explicit
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Element 1: Execution 
Model• Tradeoff 1: MIMD vs. SIMD [Mahesri MICRO’08]

– Additional HW cost vs. SIMD �  greater SW flexibility

– Irregular data parallelism (divergence), task parallelism

– MIMD: better throughput for irregular apps

1313
SIMD 
Width
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Element 1: Execution 
Model (cont.)

• Tradeoff 2: Latency vs. Throughput

– Simple in-order cores [Azizi DasCMP’08]

– Maximize performance/area (~factor of 2-5x)

• Tradeoff 3:  Full RISC ISA vs. Specialized Cores

– Complete ISA •  conventional code generation

– No specialized hw  improved compute density

– Support wide range of apps
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Rigel Architecture: 
Cluster View

• Rigel’s basic building block

• Eight 32b RISC cores

• 64 kB cluster-level shared cache 
(locally coherent)

• Core Design

– Simple cores �  in-order

– 2-wide issue

– Per-core SP FPUs

– Investigating MT granularity
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Rigel Architecture: Top 
Level

1616 2009 (C) Sanjay Patel

• 16 clusters per tile

• Simple tree interconnect 
within tiles

• Multistage crossbar between 
tiles and Global Cache

• Optimized for shared memory 
(no point-to-point 
communication)
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Rigel Architecture: Full 
Chip View 
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Research Directions:
Minimized MIMD

• Convert horizontal vectors into vertical vectors
– Code compaction, pipeline efficiency

• Superblock, linearized code
– Reduces number of independent icaches

• Task synchronization to recover locality in data 
stream
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Element 2: Memory Model
• Tradeoff 1: Single vs. multiple address space

– Ease of programmability

• Tradeoff 2: Hardware caches vs. scratchpads
– Locality management implicit with caches
– Software manages global sharing
– Save memory bandwidth

• Tradeoff 3: Hierarchical vs. Distributed
– Cluster cache / global cache hierarchy
– Local and global memory operations (ISA)

• Tradeoff 4: Coherence: HW vs. SW vs. HW/SW Hybrid
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“Incoherent” Memory 
System
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Motivation: Sharing Patterns
VISBench 

(x86)
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RTM Kernels 
(Rigel)

• Output: Produced before barrier, read after
• Conflict: Written by T1 and read by T2 within an 

interval
• Private: Read/written by only one task
• Input: Shared data read by T1, written by T2 in 

prev. interval
[VISBench: Mahesri et. al, Micro 
2008]
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Rigel Memory System
• Stronger memory model on demand

– Start with global operations (correctness)

– Optimize with local operations (performance)

• Global Operations
– Visibility: All cores using global ops (globally coherent)

– Bypass the cluster caches

– Higher latency, potential contention

• Local Operations
– Visibility: Only guaranteed within cluster

– May be incoherent with Global Cache

– Low latency and high (distributed) bandwidth 
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SW Coherence
• SW Coherence on Rigel:

– Based on prominent BSP pattern

– Programmer annotates shared data

– Use barrier for reasoning about coherence actions

• At barrier:

1. Flush modified shared data from cluster cache

2. Invalidate shared data that was read

3. Synchronize with other cores
• [To appear: PACT 2009]
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Element 3: Work 
Distribution

• Tradeoff (Spectrum): HW vs. SW Implementation

– Speed (HW) vs flexibility (SW)

– Hierarchical task queues: SW task management

– Flexible policies + small amount of specialized HW

– Programmable Scheduler

• Task Management Overheads (@1024 cores) [ISCA 2009]

• Overheads: enqueue, dequeue, barriers

•  < 5% overhead for most regular data-parallel workloads

•  < 15% for most irregular data-parallel workloads

• Task lengths: 100’s-100k instructions

2424 2009 (C) Sanjay Patel
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Element 4: 
Synchronization

• Need to accelerates common use patterns, which 
would normally be supported by coherence 
mechanisms:

1. Control synchronization

2. Data sharing

• Broadcast update (signaling mechanism)
–. Use cases: flags and barriers

–. Reduce contention: poll locally

• Atomic primitives (global cache)
–. Reductions, histograms

2525 2009 (C) Sanjay Patel
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Element 5: Locality 
Management

• Explicit cache management instructions
– Goal: approach control/performance of scratchpad

– Optional management of memory for performance

• Multi-level block prefetch (to various cache levels)

• Explicit flush, writeback, invalidate

• Complement local and global operations

• Automatic generation of management instructions

• Continuing and future work

2626 2009 (C) Sanjay Patel
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Rigel vs. Contemporary 
Accelerators

Rigel GPU Cell Larrabee

Vectors 1x (MIMD) 32x (SIMD) 4x (SIMD) 32x 
(SIMD)

Memory Fully 
cached

Special 
Purpose

DMA+ 
Scratch

Fully 
Cached

Address 
Space

Single Multiple Multiple Single

Thread 
Count

Some(1-4) Heavy (10s-
100s)

None Some(~4)

“Core” 
Count

1000s 10s-100s 10s 10s

Coherence HW/SW 
hybrid

None None HW

Work 
Distribution

Software Hardware Software Software

Specialized 
HW

None Significant(
gfx)

None Some 
(texture)
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Results: Scalability

2828

• Baseline: 8 core cluster
• Based on cycle-accurate, execution-driven 
simulation
• Library, run-time system code simulated
• Regular C code, standard C compiler, no 
recompilation  2009 (C) Sanjay Patel
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Feasibility: Area and 
Power

2929

•Targeting 45nm process @ 1.2 GHz, 1024 cores
•RTL synthesis results + memory compiler
•Can build this today: 320 mm2 die area, <100W 
average power
•Estimated FLOPS/W and FLOPS/mm2 match or 
exceed GPUs
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Conclusions
• Rigel addresses programmable accelerators challenges

1. Inflexible programming models 
2. Lack of conventional memory model
3. Difficulty scaling irregular parallel apps
4. FLOPS/Dev. Effort

• Software coherence viable approach
• Task management requires little HW
• 1024-core accelerator is feasible today

–. Programmability: Task API + MIMD execution
–. Area/performance: 8 GFLOPS/mm2 @ ~100W
–. GPU-like density, CPU-like programmability

3131 2009 (C) Sanjay Patel
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• Thank you!

• Questions?
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