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Emergent Phenomenon: GPU
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S. Green, “GPU Physics,” SIGGRAPH 2007 GPGPU Course.
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Accelerated Computing:

Tl s
Programmable data parallel accelerator:

HW entity designed to provide advantages
for a class of apps including: higher
performance, lower power, or lower unit

—cost relative to a general-purpose CPU.

. Contemporary Accelerators: GPUs, Cell, Larrabee

. Some Challenges:

.. Inflexible parallel programming models
.. Lack of conventional memory model

. Irregular parallel apps difficult to scale
.. Significant effort in optimizing code

. Effect on Development: Unattractive time to solution
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Accelerated Computing:

TOAMAFrrow

Challenge: Performance vs. app
development effort

- Accelerator Trend: Increasing
programmability

- While still providing performance

GPU, Cell




Accelerated Computing:
Matrirc

- FLOPS/mm2
(throughput)
- FLOPS/Watt (power)

- FLOPS/Programming
E

. SIMD/Vector

. Threading

. Memory management
. Programming model support
. Performance portability
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Project Orion

Applications, Programming
Environments, and Architecture

for 1000-core Parallelism
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Rigel Design Goals:

(laan_clate architartiira

- Generalized computation accelerator oriented towards data
parallel applications

Focus on emerging visual computing and interactive HPC applications

- Maximize objectives

Perf/area, Perf/watt (ops/joule), Perf/effort

- Support for work queue-based data parallel programming models
E.g., CUDA, OpenCL, OpenMP, Ct, Cilk, etc

Task-based models starting to get commercial traction
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Work Queue-based

Nata Parallal Proaramminnm

Bulk
Synchronous
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Pattern: Bulk-Synchronous

LRSS P)

1. Computation

Interv
al ,
] 2. Communication
] 3. Barrier
Synchronization
...Repeat...

. Compute and communication phases separated by barriers
. High degree of read-sharing within interval
. Private working set, minimal write sharing within intervals
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Motivation: Sharing Patterns
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Low-level Programming

Intarfaro
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DequeueTask() Programmer
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Microarchitecture Architect
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Design Issues: Clean-slate

Aarchitarctiira

Efficiently target wide class of (irregular) parallel apps
Maximize programmability and productivity

.. Execution Model: ISA, SIMD vs. MIMD, VLIW, OoOE, MT

.. Memory Model: Caches, scratchpad, ordering, coherence
;. Work Distribution: Scheduling, SW/HW spectrum

«. Synchronization: Scalability, influence on prog. model

s. Locality Management: HW/SW, implicit/explicit
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Element 1: Execution

Tradeoff 1: MIMD vs. SIMD [Mahm

- Additional HW cost vs. SIMD greater SW flexibility
- Irreqular data parallelism (divergence), task parallelism
- MIMD: better throughput for irregular apps
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Element 1: Execution
MnAdal (rant )

- Tradeoff 2: Latency vs. Throughput
- Simple in-order cores [Azizi DasCMP'08]
- Maximize performance/area (~factor of 2-5x)

- Tradeoff 3: Full RISC ISA vs. Specialized Cores
- Complete ISA « conventional code generation
- No specialized hw = improved compute density
- Support wide range of apps
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Rigel Architecture:

(liictar \/iow

Interface to interconnect

Interconnect

Cluster View
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Rigel’'s basic building block
Eight 32b RISC cores

. 64 kB cluster-level shared cache

(locally coherent)

. Core Design

Simple cores in-order

2-wide issue
Per-core SP FPUs
Investigating MT granularity

d
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Rigel Architecture: Top

| av/al

16 clusters per tile

Simple tree interconnect
within tiles

Multistage crossbar between
tiles and Global Cache

- Optimized for shared memory
(no point-to-point
communication)

Tile View Global Cache Banks

AN

Ricel [LLLINO S

000

nterconnect

00O

II"

o
o
o

GDDR

Chip Level View

2009 (C) SanjhglRatel




Rigel Architecture: Full
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Research Directions:
Minimizad MIMD

. Convert horizontal vectors into vertical vectors
- Code compaction, pipeline efficiency

. Superblock, linearized code
- Reduces number of independent icaches

- Task synchronization to recover locality in data
stream

'Ri o/ §LLLINOIS 2009 (C) Sanjh§I@atel

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Element 2: Memory Model

. Tradeoff 1: Single vs. multiple address space
- Ease of programmability

. Tradeoff 2: Hardware caches vs. scratchpads

- Locality management implicit with caches

- Software manages global sharing

- Save memory bandwidth

. Tradeoff 3: Hierarchical vs. Distributed

- Cluster cache / global cache hierarchy

- Local and global memory operations (ISA)

. Tradeoff 4: Coherence: HW vs. SW vs. HW/SW Hybrid
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“Incoherent” Memory

CQv/ctam
- Global Loads and Stores :.: Local W“SS;l VWriteback/Eviction T

Il Local Loads and Stores [ Flush
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Motivation: Sharing Patterns
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Rigel Memory System

Stronger memory model on demand

- Start with global operations (correctness)

- Optimize with local operations (performance)
Global Operations

- Visibility: All cores using global ops (globally coherent)
- Bypass the cluster caches

- Higher latency, potential contention

Local Operations

- Visibility: Only guaranteed within cluster

- May be incoherent with Global Cache

- Low latency and high (distributed) bandwidth

" ILLINOTIS

N)
o
o
(o)

G
g
Q
-

jayXatel

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN (




SW Coherence

- SW Coherence on Rigel:
- Based on prominent BSP pattern
- Programmer annotates shared data
- Use barrier for reasoning about coherence actions

. At barrier:
.. Flush modified shared data from cluster cache
.. Invalidate shared data that was read

;. Synchronize with other cores
[To appear: PACT 2009]
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Element 3: Work
Nictrihiitinn

. Tradeoff (Spectrum): HW vs. SW Implementation
_Speed (HW) vs flexibility (SW)
_Hierarchical task queues: SW task management
_Flexible policies + small amount of specialized HW
_Programmable Scheduler

. Task Management Overheads (@1024 cores) [ISCA 2009]
. Overheads: enqueue, dequeue, barriers
. < 5% overhead for most regular data-parallel workloads
. < 15% for most irregular data-parallel workloads
. Task lengths: 100’s-100k instructions
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Element 4:
- | L

Need to accelerates common use patterns, which
would normally be supported by coherence
mechanisms:

.. Control synchronization

.. Data sharing

Broadcast update (signaling mechanism)
- Use cases: flags and barriers

- Reduce contention: poll locally

Atomic primitives (global cache)

- Reductions. histoarams
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Element 5: Locality

Mananamaont

Explicit cache management instructions

- Goal: approach control/performance of scratchpad

- Optional management of memory for performance
. Multi-level block prefetch (to various cache levels)
. Explicit flush, writeback, invalidate

. Complement local and global operations
. Automatic generation of management instructions

Continuing and future work
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Rigel vs. Contemporary

Arrelaratnrc
Vectors 1x (MIMD) 32x (SIMD) 4x (SIMD) 32x
(SIMD)
Memory Fully Special DMA+ Fully
cached Purpose Scratch Cached
Address Single Multiple Multiple Single
Space
Thread Some(1l-4) Heavy (10s- None Some(~4)
Count 100s)
“Core” 1000s 10s-100s 10s 10s
Count
Coherence HW/SW None None HW
hybrid
Work Software Hardware Software Software
. Distribution

Specialized None Significé'ﬂ:@og Nartean2yFaSbige
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Results: Scalabilitv
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- Baseline: 8 core cluster
- Based on cycle-accurate, execution-driven
simulation

Library run-time system code simulated

r C code, standard C compiler, no
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Feasibility: Area and

‘RTL synthesis results + memory compiler
‘Can build this today: 320 mm2 die area, <100W
average power

‘Estimate an mm?Z2 match or

exceed GPUs
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1. Inflexible programming models

.. Lack of conventional memory model

. Difficulty scaling irregular parallel apps
.. FLOPS/Dev. Effort

. Software coherence viable approach
. Task management requires little HW

1024-core accelerator is feasible today
- Programmability: Task APl + MIMD execution
- Area/performance: 8 GFLOPS/mm2 @ ~100W
- GPU-like density, CPU-like programmability
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- Thank you!

. Questions?
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