
Click to edit Master subtitle style

 26/08/2009 2009 (C) Sanjay Patel

Rigel:
A Scalable

Architecture for 1000+
Core Accelerators

Prof. Sanjay J. Patel
Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

“CoreKong”

 26/08/2009 2009 (C) Sanjay Patel

Emergent Phenomenon: GPU
Computing

Quadro
FX 5600

NV35 NV40

G70
G70-512

G71

Tesla
C870

NV30

3.0 GHz
Core 2 Quad3.0 GHz

Core 2 Duo
3.0 GHz Pentium 4

GeForce
8800 GTX

0

100

200

300

400

500

600

Jan 2003 Jul 2003 Jan 2004 Jul 2004 Jan 2005 Jul 2005 Jan 2006 Jul 2006 Jan 2007 Jul 2007

G
F
L
O
P
S

 S. Green, “GPU Physics,” SIGGRAPH 2007 GPGPU Course.
http://www.gpgpu.org/s2007/slides/15-GPGPU-physics.pdf

22 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Accelerated Computing:
Today

• Contemporary Accelerators: GPUs, Cell, Larrabee
• Some Challenges:

1. Inflexible parallel programming models
2. Lack of conventional memory model
3. Irregular parallel apps difficult to scale
4. Significant effort in optimizing code

• Effect on Development: Unattractive time to solution

33 2009 (C) Sanjay Patel

Programmable data parallel accelerator:
HW entity designed to provide advantages
for a class of apps including: higher
performance, lower power, or lower unit
cost relative to a general-purpose CPU.

 26/08/2009 2009 (C) Sanjay Patel

Accelerated Computing:
Tomorrow

• Challenge: Performance vs. app
development effort

• Accelerator Trend: Increasing
programmability

– While still providing performance

Spectrum of Programmable Accelerators

44 2009 (C) Sanjay Patel

(less) ease of
Programmability (more)

FPGA GPU, Cell Rigel,
x86 multicore

 26/08/2009 2009 (C) Sanjay Patel

Accelerated Computing:
Metrics

• SIMD/Vector

• Threading

• Memory management

• Programming model support

• Performance portability

55

• FLOPS/mm2
(throughput)

• FLOPS/Watt (power)
• FLOPS/Programming

Effort

 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Project Orion

2
Illinois
Image Formation
and Processing

Orion

Architecture
Programming
Environments Application

s

Applications, Programming
Environments, and Architecture

for 1000-core Parallelism

66 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Rigel Design Goals:
Clean-slate architecture

– Generalized computation accelerator oriented towards data
parallel applications

• Focus on emerging visual computing and interactive HPC applications

– Maximize objectives

• Perf/area, Perf/watt (ops/joule), Perf/effort

– Support for work queue-based data parallel programming models

• E.g., CUDA, OpenCL, OpenMP, Ct, Cilk, etc

• Task-based models starting to get commercial traction

77 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Work Queue-based
Data Parallel Programming

 2009 (C) Sanjay Patel88 of 23

OpenC
L

Cuda

DXComp
ute

Ct

TBB

Cil
k

Bulk
Synchronous

…

 26/08/2009 2009 (C) Sanjay Patel

Pattern: Bulk-Synchronous
(BSP)

• Compute and communication phases separated by barriers

• High degree of read-sharing within interval

• Private working set, minimal write sharing within intervals

 2009 (C) Sanjay Patel99 of 23

3. Barrier
 Synchronization

1. Computation

2. Communication

�

…Repeat…

Interv
al

�

 26/08/2009 2009 (C) Sanjay Patel

Motivation: Sharing Patterns
VISBench

(x86)

 2009 (C) Sanjay Patel1010

RTM Kernels
(Rigel)

• Output: Produced before barrier, read after
• Conflict: Written by T1 and read by T2 within an

interval
• Private: Read/written by only one task
• Input: Shared data read by T1, written by T2 in

prev. interval
[VISBench: Mahesri et. al, Micro
2008]

 26/08/2009 2009 (C) Sanjay Patel

Low-level Programming
Interface

1111 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Design Issues: Clean-slate
architecture

 2009 (C) Sanjay Patel1212

• Efficiently target wide class of (irregular) parallel apps

• Maximize programmability and productivity

1. Execution Model: ISA, SIMD vs. MIMD, VLIW, OoOE, MT

2. Memory Model: Caches, scratchpad, ordering, coherence

3. Work Distribution: Scheduling, SW/HW spectrum

4. Synchronization: Scalability, influence on prog. model

5. Locality Management: HW/SW, implicit/explicit

 26/08/2009 2009 (C) Sanjay Patel

Element 1: Execution
Model• Tradeoff 1: MIMD vs. SIMD [Mahesri MICRO’08]

– Additional HW cost vs. SIMD � greater SW flexibility

– Irregular data parallelism (divergence), task parallelism

– MIMD: better throughput for irregular apps

1313
SIMD
Width

 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Element 1: Execution
Model (cont.)

• Tradeoff 2: Latency vs. Throughput

– Simple in-order cores [Azizi DasCMP’08]

– Maximize performance/area (~factor of 2-5x)

• Tradeoff 3: Full RISC ISA vs. Specialized Cores

– Complete ISA • conventional code generation

– No specialized hw improved compute density

– Support wide range of apps

 2009 (C) Sanjay Patel1414

 26/08/2009 2009 (C) Sanjay Patel

Rigel Architecture:
Cluster View

• Rigel’s basic building block

• Eight 32b RISC cores

• 64 kB cluster-level shared cache
(locally coherent)

• Core Design

– Simple cores � in-order

– 2-wide issue

– Per-core SP FPUs

– Investigating MT granularity

1515 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Rigel Architecture: Top
Level

1616 2009 (C) Sanjay Patel

• 16 clusters per tile

• Simple tree interconnect
within tiles

• Multistage crossbar between
tiles and Global Cache

• Optimized for shared memory
(no point-to-point
communication)

 26/08/2009 2009 (C) Sanjay Patel

Rigel Architecture: Full
Chip View

1717 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Research Directions:
Minimized MIMD

• Convert horizontal vectors into vertical vectors
– Code compaction, pipeline efficiency

• Superblock, linearized code
– Reduces number of independent icaches

• Task synchronization to recover locality in data
stream

 2009 (C) Sanjay Patel1818

 26/08/2009 2009 (C) Sanjay Patel

Element 2: Memory Model
• Tradeoff 1: Single vs. multiple address space

– Ease of programmability

• Tradeoff 2: Hardware caches vs. scratchpads
– Locality management implicit with caches
– Software manages global sharing
– Save memory bandwidth

• Tradeoff 3: Hierarchical vs. Distributed
– Cluster cache / global cache hierarchy
– Local and global memory operations (ISA)

• Tradeoff 4: Coherence: HW vs. SW vs. HW/SW Hybrid

1919 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

“Incoherent” Memory
System

2020 of 23 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Motivation: Sharing Patterns
VISBench

(x86)

 2009 (C) Sanjay Patel2121

RTM Kernels
(Rigel)

• Output: Produced before barrier, read after
• Conflict: Written by T1 and read by T2 within an

interval
• Private: Read/written by only one task
• Input: Shared data read by T1, written by T2 in

prev. interval
[VISBench: Mahesri et. al, Micro
2008]

 26/08/2009 2009 (C) Sanjay Patel

Rigel Memory System
• Stronger memory model on demand

– Start with global operations (correctness)

– Optimize with local operations (performance)

• Global Operations
– Visibility: All cores using global ops (globally coherent)

– Bypass the cluster caches

– Higher latency, potential contention

• Local Operations
– Visibility: Only guaranteed within cluster

– May be incoherent with Global Cache

– Low latency and high (distributed) bandwidth

 2009 (C) Sanjay Patel2222

 26/08/2009 2009 (C) Sanjay Patel

SW Coherence
• SW Coherence on Rigel:

– Based on prominent BSP pattern

– Programmer annotates shared data

– Use barrier for reasoning about coherence actions

• At barrier:

1. Flush modified shared data from cluster cache

2. Invalidate shared data that was read

3. Synchronize with other cores
• [To appear: PACT 2009]

 2009 (C) Sanjay Patel2323

 26/08/2009 2009 (C) Sanjay Patel

Element 3: Work
Distribution

• Tradeoff (Spectrum): HW vs. SW Implementation

– Speed (HW) vs flexibility (SW)

– Hierarchical task queues: SW task management

– Flexible policies + small amount of specialized HW

– Programmable Scheduler

• Task Management Overheads (@1024 cores) [ISCA 2009]

• Overheads: enqueue, dequeue, barriers

• < 5% overhead for most regular data-parallel workloads

• < 15% for most irregular data-parallel workloads

• Task lengths: 100’s-100k instructions

2424 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Element 4:
Synchronization

• Need to accelerates common use patterns, which
would normally be supported by coherence
mechanisms:

1. Control synchronization

2. Data sharing

• Broadcast update (signaling mechanism)
–. Use cases: flags and barriers

–. Reduce contention: poll locally

• Atomic primitives (global cache)
–. Reductions, histograms

2525 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Element 5: Locality
Management

• Explicit cache management instructions
– Goal: approach control/performance of scratchpad

– Optional management of memory for performance

• Multi-level block prefetch (to various cache levels)

• Explicit flush, writeback, invalidate

• Complement local and global operations

• Automatic generation of management instructions

• Continuing and future work

2626 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Rigel vs. Contemporary
Accelerators

Rigel GPU Cell Larrabee

Vectors 1x (MIMD) 32x (SIMD) 4x (SIMD) 32x
(SIMD)

Memory Fully
cached

Special
Purpose

DMA+
Scratch

Fully
Cached

Address
Space

Single Multiple Multiple Single

Thread
Count

Some(1-4) Heavy (10s-
100s)

None Some(~4)

“Core”
Count

1000s 10s-100s 10s 10s

Coherence HW/SW
hybrid

None None HW

Work
Distribution

Software Hardware Software Software

Specialized
HW

None Significant(
gfx)

None Some
(texture)

 2009 (C) Sanjay Patel2727 of 23

 26/08/2009 2009 (C) Sanjay Patel

Results: Scalability

2828

• Baseline: 8 core cluster
• Based on cycle-accurate, execution-driven
simulation
• Library, run-time system code simulated
• Regular C code, standard C compiler, no
recompilation 2009 (C) Sanjay Patel

0

20

40

60

80

100

120

S
p

e
e
d

u
p

 v
s
. 1

 C
lu

s
te

r

 26/08/2009 2009 (C) Sanjay Patel

Feasibility: Area and
Power

2929

•Targeting 45nm process @ 1.2 GHz, 1024 cores
•RTL synthesis results + memory compiler
•Can build this today: 320 mm2 die area, <100W
average power
•Estimated FLOPS/W and FLOPS/mm2 match or
exceed GPUs

 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Co-Contributors

• Wen-mei Hwu, Thomas Huang, Mark
Horowitz, Minh Do, Steve Lumetta, Matt
Frank, Shobha Vasudevan, Sara Baghsorki,
Neal Crago, Danny Johnson, Matt Johnson,
John Kelm, Aqeel Mahesri, Quang Nguyen,
Bill Tuohy, Voytek Truty, Simion Venshtain,
and others

3030 of 23 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

Conclusions
• Rigel addresses programmable accelerators challenges

1. Inflexible programming models
2. Lack of conventional memory model
3. Difficulty scaling irregular parallel apps
4. FLOPS/Dev. Effort

• Software coherence viable approach
• Task management requires little HW
• 1024-core accelerator is feasible today

–. Programmability: Task API + MIMD execution
–. Area/performance: 8 GFLOPS/mm2 @ ~100W
–. GPU-like density, CPU-like programmability

3131 2009 (C) Sanjay Patel

 26/08/2009 2009 (C) Sanjay Patel

• Thank you!

• Questions?

 2009 (C) Sanjay Patel3232 of 23

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32

