

Leveraging Multichannel 3D DRAMs in MPSoCs

Drew Wingard, Sonics

From MPSoC '06: NoC is the Answer! (What was the Question?)

NoC Myths

- 1. MPSoC applications offer lots of network-level concurrency
- 2. Packetization and serialization are the best way to minimize implementation costs
- 3. NoC latency is acceptable

MPSoC '06: NoC is the Answer! (What was the Question?)

Concurrency in Consumer MPSoCs

Consumer MPSoCs process data in parallel, but communicate...

Concurrency in Consumer MPSoCs

From MPSoC '07: High-perf. multithreaded memory subsystems for MPSOCs

Single-port DRAM Subsystem Protocols

Ordering/ flow control	In-order/ blocking	Out-of-order/ blocking	Out-of-order/ non-blocking
Peak BW limited by	DRAM	DRAM	DRAM
Ordering flexibility	None	High	High
Queuing	None	Shared	Per-thread
Compiled RAM-friendly	No	No	Yes
Init. BW==DRAM BW	Yes	Yes	No
DRAM efficiency	Medium	High	High
Max. CPU latency	High	Medium	Low
Data interleaving	None	Minor	High

MPSoC '07:High-performance multithreaded memory subsystems for MPSoC's

6

MPSoC DRAM Problems and Opportunities

Problems in current systems

- In consumer & mobile SoCs, DRAM bandwidth needs grow faster than capacity needs
- Scaling DRAM bandwidth requires extra DRAMs
 - And power-hungry PHYs
- Wider DRAM interfaces & deeper pipelining increases access granularity, driving need for multichannel aproaches
 - Which causes extra pin costs (after 2 channels)
- Current DRAM interfaces are a bottleneck between
 - Lots of parallel initiators (data clients)
 - Lots of parallel DRAM banks (data servers)

■ What if we could get rid of the interface bottleneck?

- And be limited by DRAM bank bandwidths, instead
- Without needing fancy PHYs

Wide I/O: TSV-enabled Mobile DRAM

- Pending JEDEC standard (JC 42.6)
- High bandwidth, even at low capacity
 - Like 4 (x32) channels of LPDDR2-800
 - 12.8 GBytes/sec peak bandwidth

Lowest power

- No PHY (simple drivers/receivers, no PLL/DLL)
- Low loading (capacitance and inductance)
- Modest frequency (200 MHz)

Smallest form factor

- 3D stacked based on thin (50µm) TSV-based die
- Minimal change to DRAM design (ex-TSV)
- Risks are all TSV-related (cost, yield, biz model)
- Smartphone market will drive volumes

Wide I/O Power Estimates

WideIO offers twice the BW of LPDDR2 for same power

Multichannel DRAM System Challenges

Key Problems:

- Load balancing
 - Must balance memory traffic evenly among channels
- Maintaining throughput
 - Multiple channels cause throughput & ordering issues for pipelined memories

Software and IP cores must manage multiple channels explicitly

Interleaved Multichannel Technology (IMT*): Seamless Transition to Multichannel

*patents pending

- Interleaving support requires splitting (and chopping!) traffic for delivery to proper channel
 - Splitting in memory controller <u>creates performance and routing</u> <u>congestion bottleneck</u>
- Predictably high performance
 - <u>Automatically spreads traffic</u> across channels to ensure load balancing
 - Keeps DRAMs operating at full throughput <u>without costly</u> reorder buffers
- Scalable architecture
 - Up to 8 interleaved channels within the same address region
 - Fully distributed to avoid bottlenecks & placement restrictions
- Application flexibility
 - Transparent to software and initiator hardware
 - Supports full or partial memory configurations at run time
 Multichannel Interleaving in the Interconnect
 Higher Performance, Lower Area, More Scalable

IMT: Transparent to System, Optimized for Performance

Complete Wide I/O System Solution

Summary

- Consumer MPSoCs performance still dominated by DRAM
- Bandwidth requirements driving multichannel approaches
 - Increasing target-level parallelism for networks
- New JEDEC Wide I/O standard offers compelling performance and power benefits
 - Assuming TSV-related issues can be managed
- MPSoC solutions with transparent load balancing unlock the potential of 3D multichannel DRAMs
 - If they maintain high DRAM efficiency and QoS