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Grand Challenge Scaling - Pushing a Fully
Programmable TeraOp into Handset Imaging

Chris Rowen
Cadence Fellow/Tensilica CTO
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Outline

» Grand challenge problem for the next decade:
video and vision intelligence

* An example problem: bilateral image filtering
* A new platform for imaging — IVP
» Scaling IVP
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Imaging/Video Becoming Platform Differentiator
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Bilateral Filter

» Highly selective, edge preserving filter

o Noise reduction, edge preserving blur,
3D depth filtering and many other apps

» Uses dot product of two kernels:
o Spatial kernel

o Image gradient kernel )Tf x--—
. Qradient kernel varies adaptively with 7 (4 y) = Z w(i, j, x,9) 1(i,))
image content jerBima

o Filter kernel needs to be re-calculated

. 1(d(ijxa)) 1 (g ) (=)
every plxel _E(L-”} |u]

1 i
“r(f,j, .t'._\-') = ﬂ e ? of I e 2\ O
o Normalization requires a division
» ~500 RISC operations per pixel across d(;,j,xy) =i - 02+ ( — )2 Spatial component

multiple components

e Todo 4K x 2K @ 60fpS' 9(11:12) = |I1-12| Gradient component
> 500M pixels per second
250 billion operations per second
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Target Platform: IVP

The Problem: Extreme
computation and energy
demands for VP

» Advanced imaging

* Vision

* Gesture

* Video Post-processing

The Solution:

* I[VP: Many parallel “element
engines” + Xtensa control
programmed as SIMD
uniprocessor

» Each element engine —
many operations per cycle:

» Deep DSP pipeline for high
clock frequency

» Powerful data
reorganization: <>

+ Predicated architecture On-chip ~T

network

* Mature SIMD/VLIW software ( C y
tools and libraries
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Memory Network Interface

Multi-Bank Data Memory

i

Scaling IVP
Interrupts for synchronization Interrupts for synchronization

Transfer
Engine
Transfer
Engine

<> UDMA

Memory/Network I/F Memory/Network 1/F

To system bus

Flexible compute pipeline / parallel execution
Control via interrupts

Data via uDMA

Peak 16b operation rate approaching 1 TeraOp
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Multicore Considerations

* Cores can communicate as follows:

o Directly with neighboring cores via direct shared memory and uDMA,
managed via interrupts.

o Read/write system memory directly or, more commonly, via uDMA
« uDMA:

o Can write to the local memory of neighboring cores.
o Can read and write system memory and local core memory.

» Synchronization is done via interrupts and shared memory
o Standard API provided via “Xtensa Communication Protocol”.
o Using interrupts allows easy power management of inactive cores.
o Overhead easily absorbed for common imaging tasks
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channel-based communications on
distributed shared memory

* Unidirectional communication channel between a producer-consumer task

+ Consumer allocates buffer space in its local memory: Data allocated and consumed in FIFO order
* Read counter at producer and write counter at consumer
— Track read/write addresses in the buffer
— Updated by remote core after read/write
— Local variables
» Requires direct writes/DMA from producer to consumer
— Ability to notify each other — interrupts/MMIO registers
+ OS neutral: API to register callbacks for enabling/disabling interrupts, task sleep/wakeup — tested on

XOS/XTOS.
READ CNTR > WRITE CNTR
I PRODUCER I
5

| DataRAMO | | DataRAM1 | DataRAMO | | DataRAM1 |
1) Allocate: check if buffer space available in consumer 4) Get block: check if data available
2) Transfer: DMA data from producer to consumer at 5) Consume at write cntr index

read cntr index 6) Release: Update read cntr & interrupt producer

3) Commit: Update write cntr & interrupt consumer Q
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Using Multiple IVPs for Bilateral Filter

* Ample parallelism in complex filters

» Use uDMA to fetch and send tiles
from/to the image in main memory.
o Each tile can be computed independently

o Overlap region, especially overlap between
horizontally-adjacent cores, fetched twice

o Tiles are fetched to local memory using a
double buffering

o Processed tiles are sent back to memory
via the uDMA, again offloading the
processor.

o Leverages single-core “Tile Manager”
programming model

Slice 128 x 128

 Daisy-chained interrupt notification of
new data availability, and task
completion

 Reduced overhead with increased
slice size

Tile 128x16

i
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More Ops, Lower Power per Ops
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GPU/CPU are estimates for popular platforms

Energy: Core Watts per Billion 16b Pixel Ops
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Results

* |VP takes general-purpose image
processing to new efficiency level: <0.005
W per B 16b pixel ops

* Imaging suitable for homogeneous
distributed shared local memory MP
scaling

* MP app just a modest effort from single-
core app — a few engineer days

* Many options for multi-core imaging
programming:

o Image partitioning into parallel sub-tasks

o Producer-consumer task processing
chains

o Dynamic task pool allocation




