Multi-Megabit Channel Decoder UMTS standard: 2 Mbit/s throughput requirements NoC based Multi-ASIP Turbo-Code Decoder - O Heterogeneous communication network: busses and ring NoC - Optimized Tensilica cores for MAP decoding - Synthesis-based, 0.18um technology, UMTS compliant (K=5114, 5 iterations) | Total
Nodes
(N) | # of
Clusters
(C) | Cluster
Nodes
(N _C) | Throughp.*
[Mbit/s] | Area
Comm.
[mm²] | Area Total
[mm²] | Efficiency
[Mb/s*mm ²] | |-----------------------|-------------------------|---------------------------------------|------------------------|------------------------|---------------------|---------------------------------------| | 1 | 1 | 1 | 1.48 | NA | 6.42 | 1 | | 5 | 1 | 5 | 7.28 | 0.21 | 14.45 | 2.19 | | 6 | 2 | 3 | 8.72 | 0.66 | 16.73 | 2.26 | | 8 | 4 | 2 | 11.58 | 1.25 | 20.91 | 2.40 | | 12 | 6 | 2 | 17.18 | 2.02 | 28.92 | 2.58 | | 16 | 8 | 2 | 22.64 | 2.88 | 36.98 | 2.66 | | 32 | 16 | 2 | 43.25 | 7.29 | 70.26 | 2.67 | | 40 | 20 | 2 (| 52.83 | 10.05 | 87.47 | 2.62 | * Validated with Tensilica Xtensa API Interface, Tensilica ISS simulator 2 ## **Multi-Megabit Channel Decoder** ### **Dedicated Implementation** - O VHDL-Model of fully parameterizable scalable Turbo-Decoder - Synthesis and Power-Characterization with Synopsys Design Compiler on a 0.18 µm Standard Cell Library - Validated in UMTS environment - 166 MHz Log-MAP Implementation with 6 Turbo Iterations | Parallel SMAP Units N _D | 1 | 4 | 6 | 6 | 6 | 8 | 8 | |------------------------------------|------|------|------|------|----------|------|------| | Parallel I/O N _{IO} | 1 | 1 | 1 | 2 | con. I/O | 1 | 2 | | Total Area [mm ²] | 3.9 | 9.2 | 13.3 | 13.0 | 18.0 | 15.9 | 17.3 | | Fraction of Memory | 85% | 69% | 69% | 68% | 77% | 61% | 0+70 | | Energy per Block [mJ] | 48.7 | 51.7 | 55.2 | 50.9 | 55.2 | 57.6 | 55.2 | | Throughput [MBit/s] | 11.7 | 39.0 | 50.6 | 59.6 | 72.6 | 59.7 | 72.7 | | Efficiency (norm.) | 1.00 | 1.32 | 1.12 | 1.47 | 1.19 | 1.05 | 1.24 | 2 # Multi-Gigabit Requirements - Mobile traffic increases 60%/year until 2017 - New Communication Standards e.g. LTE-Advanced - New techniques e.g. Coordinated Multipoint (CoMP), multi-user MIMO - CoMP: 4 users/sector with 75 Mbit/s each - Three sectors and 1 CoMP iteration: 4 x 75 x 3 x 2 = 1.8 Gbit/s - IEEE 802.3an (10 GBASE T): 10Gbit/s - IEEE 802.3ba standard: 100Gbit/s Ethernet speed - Future: fiber channel 100Tb/s 4 # MAP Parallelism >64 Architecture efficiency largely decreases Use multiple instances of a decoder What about unrolling the iterative loop? LDPC Decoder Inherent parallel Defined via sparse parity check matrix H Variable Nodes H = 1100 11111 0001 Check Nodes | | Decoder | [14] | [15] | [16] | [17] | Proposed | |--------------------|---|--|--|---|-----------------------------|--------------------------| | | | | | | | | | | CMOS Technology | 65nm | 65nm LVT | 65nm
0.9 | 65nm
1.3 | 65nm SVT | | Supply Voltage [V] | | - | 1.2 | | | 1.2 | | | Frequency [MHz]
Standard | 235
IEEE 802.15.3c | 400
IEEE 802.15.3c | 400
IEEE 802.3an | 195
IEEE 802.3an | 257
IEEE 802.11ad | | | | 7/8 | | | 1723/2048 | 13/16 | | | Code Rate
Level of Parallelism | | 1/2, 5/8, 3/4, 7/8 | 1723/2048 | | fully parallel, unrolled | | | | partially parallel
lavered | partially parallel
layered | partially parallel
two-phase | fully parallel
two-phase | two-phase | | | Scheduling
Algorithm | min-sum | min-sum | min-sum | threshold min-sum | min-sum | | | Iterations | 5 | 10 | 8 | 11 | 9 | | | Ouantization | 6 | 6 | 4 | 5 | 4 | | | Area [mm ²] | 0.79 | 1.30 | 5.05 | 184 | 12.09 | | | Throughput [Gbit/s] | 7.9 | 6.7 | 8.5 | 36.3 | 160.8 | | | Power Eff. [pJ/bit/Iter.] | 7.9 | 8 | 11.76 | 3.30 | 3.61 | | | Area Eff. [Gbit/s/mm ²] | 10.0 | 5.2 | 1.76 | 7.5 | 13.6 | | | archi
Comm
Asilo
[15] Z. Cl
"A m
802.1
DAT)
[16] Z. Zh | tecture for partial parall
paters (ASILOMAR), 2
mar Conference on, 20
nen, X. Peng, X. Zhao,
nacro-layer level fully p.
15.3c application," in 1,
3c application as you hand, 2011 International Synang, V. Anantharam, M.
NASE-T Ethernet LDPO | n, and B. Baas, "A reduced
el LDPC decoders," in Sign
011 Conference Record of
111, pp. 2192–2196.
Q. Xie, L. Okamura, D. Zl
arallel layered LDPC decod
VLSI Design, Automation
imposium on, 2011, pp. 1–
I. Wainwright, and B. Niko
E Decoder Design With Le
ournal of, vol. 45, no. 4, pp. | tals, Systems and f the Forry Fifth toou, and S. Goto, er SOC for IEEE and Test (VLSI- 4. lic, "An Efficient w Error Floors," | | |