

Multi-Megabit Channel Decoder

UMTS standard: 2 Mbit/s throughput requirements

NoC based Multi-ASIP Turbo-Code Decoder

- O Heterogeneous communication network: busses and ring NoC
- Optimized Tensilica cores for MAP decoding
- Synthesis-based, 0.18um technology, UMTS compliant (K=5114, 5 iterations)

Total Nodes (N)	# of Clusters (C)	Cluster Nodes (N _C)	Throughp.* [Mbit/s]	Area Comm. [mm²]	Area Total [mm²]	Efficiency [Mb/s*mm ²]
1	1	1	1.48	NA	6.42	1
5	1	5	7.28	0.21	14.45	2.19
6	2	3	8.72	0.66	16.73	2.26
8	4	2	11.58	1.25	20.91	2.40
12	6	2	17.18	2.02	28.92	2.58
16	8	2	22.64	2.88	36.98	2.66
32	16	2	43.25	7.29	70.26	2.67
40	20	2 (52.83	10.05	87.47	2.62

* Validated with Tensilica Xtensa API Interface, Tensilica ISS simulator

2

Multi-Megabit Channel Decoder

Dedicated Implementation

- O VHDL-Model of fully parameterizable scalable Turbo-Decoder
- Synthesis and Power-Characterization with Synopsys Design Compiler on a 0.18 µm Standard Cell Library
- Validated in UMTS environment
- 166 MHz Log-MAP Implementation with 6 Turbo Iterations

Parallel SMAP Units N _D	1	4	6	6	6	8	8
Parallel I/O N _{IO}	1	1	1	2	con. I/O	1	2
Total Area [mm ²]	3.9	9.2	13.3	13.0	18.0	15.9	17.3
Fraction of Memory	85%	69%	69%	68%	77%	61%	0+70
Energy per Block [mJ]	48.7	51.7	55.2	50.9	55.2	57.6	55.2
Throughput [MBit/s]	11.7	39.0	50.6	59.6	72.6	59.7	72.7
Efficiency (norm.)	1.00	1.32	1.12	1.47	1.19	1.05	1.24

2

Multi-Gigabit Requirements

- Mobile traffic increases 60%/year until 2017
- New Communication Standards e.g. LTE-Advanced
- New techniques e.g. Coordinated Multipoint (CoMP), multi-user MIMO

- CoMP: 4 users/sector with 75 Mbit/s each
- Three sectors and 1 CoMP iteration: 4 x 75 x 3 x 2 = 1.8 Gbit/s
- IEEE 802.3an (10 GBASE T): 10Gbit/s
- IEEE 802.3ba standard: 100Gbit/s Ethernet speed
- Future: fiber channel 100Tb/s

4

MAP Parallelism >64 Architecture efficiency largely decreases Use multiple instances of a decoder What about unrolling the iterative loop? LDPC Decoder Inherent parallel Defined via sparse parity check matrix H Variable Nodes H = 1100 11111 0001 Check Nodes

	Decoder	[14]	[15]	[16]	[17]	Proposed
	CMOS Technology	65nm	65nm LVT	65nm 0.9	65nm 1.3	65nm SVT
Supply Voltage [V]		-	1.2			1.2
	Frequency [MHz] Standard	235 IEEE 802.15.3c	400 IEEE 802.15.3c	400 IEEE 802.3an	195 IEEE 802.3an	257 IEEE 802.11ad
		7/8			1723/2048	13/16
	Code Rate Level of Parallelism		1/2, 5/8, 3/4, 7/8	1723/2048		fully parallel, unrolled
		partially parallel lavered	partially parallel layered	partially parallel two-phase	fully parallel two-phase	two-phase
	Scheduling Algorithm	min-sum	min-sum	min-sum	threshold min-sum	min-sum
	Iterations	5	10	8	11	9
	Ouantization	6	6	4	5	4
	Area [mm ²]	0.79	1.30	5.05	184	12.09
	Throughput [Gbit/s]	7.9	6.7	8.5	36.3	160.8
	Power Eff. [pJ/bit/Iter.]	7.9	8	11.76	3.30	3.61
	Area Eff. [Gbit/s/mm ²]	10.0	5.2	1.76	7.5	13.6
	archi Comm Asilo [15] Z. Cl "A m 802.1 DAT) [16] Z. Zh	tecture for partial parall paters (ASILOMAR), 2 mar Conference on, 20 nen, X. Peng, X. Zhao, nacro-layer level fully p. 15.3c application," in 1, 3c application as you hand, 2011 International Synang, V. Anantharam, M. NASE-T Ethernet LDPO	n, and B. Baas, "A reduced el LDPC decoders," in Sign 011 Conference Record of 111, pp. 2192–2196. Q. Xie, L. Okamura, D. Zl arallel layered LDPC decod VLSI Design, Automation imposium on, 2011, pp. 1– I. Wainwright, and B. Niko E Decoder Design With Le ournal of, vol. 45, no. 4, pp.	tals, Systems and f the Forry Fifth toou, and S. Goto, er SOC for IEEE and Test (VLSI- 4. lic, "An Efficient w Error Floors,"		

