
Trace-Driven MPSoC Simulation
with Cache Modeling

Tsuyoshi Isshiki

Dept. of Communications and Integrated Systems
Tokyo Institute of Technology

MPSoC‘13
July. 18th, 2013

MPSoC Design Exploration Requirements

•  HW/SW MPSoC design space exploration
–  SW: algorithm design, SW partitioning
–  HW: architecture (CPUs, HW blocks, busses, memories, DMACs)
–  Mapping: SWsàCPUs, memory mapping

•  MPSoC architecture evaluation
–  System performance: cycle counts, power
–  Locating system bottlenecks: bus/memory bandwidth?, CPUs? caches?

à  Framework for efficient evaluation of SW/HW design choices

MEM µP
LCDC

DMAC0

MEM MEM

DMAC1

µP µP HW µP How will bus traffic be
affected by appl. mapping?

Where to put each
memory blocks?

Where to put each
SW blocks?

How will bus traffic be
affecte by caches?

How many DMACs is
enough?

Trace-Driven Workload Model
[@DAC’09, MPSoC’09]

•  Branch bitstream: Branch condition bit sequence recorded in
program execution order (via source-level instrumentation and
native code execution)

•  Program Trace Graph: degenerate ICFG at basic-blocks
•  PTG-edge [ei] : code segment without conditional jumps
•  PTG-edge cycle count [c(ei)] : extracted by compiler backend

e2

main-start

foo()

b0

b1

foo()

main-end

foo-start

b2

foo-end

e0

e1

e3

e4

e5

e6

e7

e8 e9

T F

F T

F T

1
0
1
1
0
0
1

e0
e1
e7
e8
e2
e3
e3
e4
e5
e7
e9
e6

1

0

1
1
0
0

1

exe.
cycles

PTG-edge
sequence

branch
bitstream

Program Trace Graph

Σc(ei)

MPSoC Trace-Driven Workload Simulator
•  MPSoC Trace-driven workload simulator

–  Coordinate parallel workload models with system
synchronization events

•  CT(thread activation), DT(data transfer), DS(data synch.)
–  Parameterized MPSoC architecture model

•  # of processors, interconnect topology
–  70x ~ 200x speedup over ISS-based simulation
–  Below 1% cycle estimation error

T1-start

T1-end

CT: T2
DT: xàT2

DS: y

b0
b1

foo()

foo-start

b2

foo-end

Trace-driven
workload
simulator

local clock

trace graph

branch bitstream

Global
scheduler

Resource manager
(bus, buffer)

Thread dispatcher

•  Trace-driven bus traffic generation
–  Triggered by processor communications, accesses to

memories and IPs
–  PTG-sync-nodes inside thread-PTGs generate the

bus traffic sequence with accurate (dynamically
changing) intervals and payloads according to a
particular set of thread-BBs

•  Bus arbitration simulation
–  Schedules multiple outstanding bus requests to resolve

bus conflicts
–  Several standard arbitration schemes supported (fixed

priority, round-robin, QoS guaranteed)

Trace-Driven Bus Traffic Simulation
[@MPSoC’11]

req

•  Bus traffic scheduling done at cycle-accurate level

P0

P1

P2

time
0

BUS P2 P0 P0 P1 P2

req

req

P0 P1 P2

pr
io

ri
ty

P2

P1
P0

P0

P2
P1

P0

P2
P1

P1

P0
P2

P2

P1
P0

P0

P2
P1

P1

P0
P2

P2

P1
P0

P0

P1
P2

Sorted by time Sorted by priority

Trace-Driven Bus Traffic Simulation

Trace-driven
processor
workloads

Trace-driven
bus workloads

Proc queue sorting conditions
depends on arbitration policy

MPSoC Architecture Description with
Shared-Memories and Bus Bridges

bridge

P0 M0

P2 M1 P1 M2

DMAC

B1

B0

DMAC

P3

BusMapping{	

 {P0,M0}, // bus_0 : proc{P0}, mem{M0}	

 {P1,P2,P3,M1,M2 } // bus_1 : proc{P1,P2,P3}, mem{M1,M2}	

}	

BridgeMapping{	

 {B0, B1} // bus_0 and bus_1 are connected through bridge	

}	

•  DMAs are pragma-annotated in
SW on particular memcpy calls

•  DMACs are instantiated
automatically according to DMA
annotations	

•  Shared memory allocations are
pragma-annotated by variable
names

à Heap memory, frame buffer, etc.	

Bus Traffic Workload Simulation

Execution platform 100 frames 1000 frames
SW exe (Xeon 3.4GHz) 0.165 sec 1.00 1.158 sec 1.00

Trace-sim (bus:ON) 6.222 sec 37.71 62.871 sec 54.29
Trace-sim (bus:OFF) 1.203 sec 7.29 12.169 sec 10.51

Trace-sim (bus:OFF+reduction) 0.684 sec 4.15 6.878 sec 5.94

•  TinyGL (Open-GL subset) “WHEEL” 3D animation
à Uses MPSoC model in previous page

Bus model PTG reduction Simulation time Estimated cycles error
ON OFF 6.222 sec 339,828,586 ---
OFF OFF 1.203 sec 328,726,603 3.27%
OFF ON 0.684 sec 321,540,634 5.38%

•  Cycle estimation errors are against “bus model = ON”
•  Bus traffic simulation requires 5x simulation time à very expensive
•  PTG-edges become more fine-grain when shared memory accesses

exit (PTG-reduction merges all memory accesses)

•  Subroutine exe. cycles showing data dependent workloads

Processor/Bus Workload Profiling

ex
e

cy
cl

es

simulation clock

•  Dynamic workload profiles for processors and busses

100%

50%

•  Workload scheduling details

Processor/Bus Workload Profiling
•  Workload percentages

bus
access

overhead
P0

P1

P2

P3

D

M
A
C
0

D
M

A
C
1

B
U

S
0

B
U

S
1

P0

P1

P2

P3

D
M

A
C
0

D
M

A
C
1

Memory access
latency = 1 cycle

Cache Workload Modeling

•  Cache miss event à dynamic bus traffic generation
•  Put cache simulator inside or outside the workload simulator?

–  Inside: accurate, but very slow
–  Outside: fast, but accuracy may become an issue…

BB gen
(SW/ISS)

workload sim

cache-sim

bus-sim

workload sim

rand-traffic

bus-sim

BB gen
(SW/ISS)

cache-sim

Hugh memory
trace file size

Accurate
bus traffic

Slow…

Random
bus traffic

Cache statistics
at each memory
access

Slow…

Cache Workload Modeling

•  Assuming we put the cache simulator outside the
workload simulator, should we put it inside or outside
the BB generator?

à  If BB generator with cache simulator runs faster than the
standalone one, it makes sense to put it inside…

rand-traffic

BB gen
(SW/ISS)

cache-sim

BB gen
(SW/ISS)

 cache-sim

rand-traffic

123M memory traces (~1GB)
SW instrumentation time

BB-gen 0.153 sec
BB-gen + cache-sim 2.037 sec
BB-gen + trace output 3.035 sec

Trace output file access
overhead is larger than
cache-sim time

Cache Workload Modeling

•  Memory tracing during BB generation
à Required only for D-cache
à Instruction trace obtained from PTG-edge seq.

•  Cache simulator à cache statistics
–  D-cache: separate statistics at each memory

access operation
–  I-cache: separate statistics at each PTG-edge

workload sim

rand-traffic

bus-sim

BB gen
(SW/ISS)

 cache-sim

•  MPSoC cache simulation during sequential BB generation
–  N processors à N cache models
–  Switch the cache model when crossing the thread

boundaries during BB gen.

SW Instrumentation for
I/D-Cache Tracing	

static void v4dwt_decode_step1(v4 * w, int count, const dwt_real_t c)
{
 dwt_real_t * fw = (dwt_real_t *) w;
 int i;
 for(i = 0; _BC_L_(i < count, 121); ++ i){
 __Mem_R_PT__(fw[0], 276);
 fw[0] = ((fw[0] * c) + ((fw[0] * c) & 4096)) >> 13;
 __Mem_W_PT__(fw[0], 178);
 __Mem_R_PT__(fw[1], 277);
 fw[1] = ((fw[1] * c) + ((fw[1] * c) & 4096)) >> 13;
 __Mem_W_PT__(fw[1], 179);
 __Mem_R_PT__(fw[2], 278);
 fw[2] = ((fw[2] * c) + ((fw[2] * c) & 4096)) >> 13;
 __Mem_W_PT__(fw[2], 180);
 __Mem_R_PT__(fw[3], 279);
 fw[3] = ((fw[3] * c) + ((fw[3] * c) & 4096)) >> 13;
 __Mem_W_PT__(fw[3], 181);
 fw += 8;
 }
}

Data trace macro:
WRITE data trace
at (&fw[3]) with ID = 181

BB generation macro:
also used for I-cache trace

Data traces need to match
with the generated target
executable code
à Requires the target
compiler framework to do this

SW-Instrumented Cache Statistics	

======================= Mem-Read Profile =======================
......
 82 9 11692 04dac230 04dac230 1.. (hm->heap_tail_index)
 83 0 11692 04dac238 04dac238 1.. (hm->heap_array)
 84 0 11692 04dac238 04dac238 1.. (hm->heap_array)
 85 981 11692 0059ed44 005a0400 ffffffff (*hn_t)
 86 0 11692 0059ed44 005a0400 ffffffff (hn_t->block_index)
 87 1 11692 04dac234 04dac234 1.. (hm->alloc_array)
 88 0 0 00000000 00000000

---- 991 70152 <<< function: remove_heap_node >>>
===

===
 12 11950 841824 24 [+] start : update_heap_node
 13 0 0 3 [+] branch $518 [T]
 14 0 70152 2 [+] branch $518 [F]
 15 0 0 1 [+] $521 := my_malloc_error ($520)
 16 0 0 4 [+] branch $516 [T]
 17 11694 175380 5 [+] branch $516 [F]
 18 5 849548 14 [+] branch $522 [T]
 19 11693 35238 3 [+] branch $522 [F]
 ..
 31 0 93984 22 [+] branch $603 [F]

---- 47056 3822289 171 <<< function: update_heap_node >>>
===

mem
access
ID

D-cache
stat.(read)

I-cache
stat.

PTG-edge
ID

misses # accesses address range

instr. in PTG-edge

cache line bitmap

95.50%	

96.00%	

96.50%	

97.00%	

97.50%	

98.00%	

98.50%	

99.00%	

99.50%	

100.00%	

4K/1W	
 4K/2W	
 4K/4W	
 8K/1W	
 8K/2W	
 8K/4W	

TCT-ISS
VS-debug
VS-release

WRITE

Accuracy Issues in SW-Instrumented
Data Cache Statistics	

•  Differences in the data trace from the native code
and target code à slight deviation in statistics

•  Not an issue for instruction trace

Cache Workload Simulation
(JPEG: 19 threads)	

I/D-Cache: ON
7,838,891 cycles
0.127 sec

I/D-Cache: OFF
2,980,005 cycles
0.032 sec

I/D-Cache(OFF)
•  Program memory and data

memory are local
•  No shared memory access
I/D-Cache(ON)
•  Program memory and data

memory are allocated on the
same shared memory

•  I-cache: 4KB, 1-way
•  D-cache: 4KB, 2-way
à  cache line size: 64 bytes
•  Shared memory latencies

–  Read: 50 cycles
–  Write: 10 cycles

Cache Workload Simulation
(TinyGL: 4 threads, 2 DMACs, 2 shared memories)	

I/D-Cache: ON
494,542,152 cycles
2.144 sec

I/D-Cache: OFF
1,681,570,743 cycles
5.034 sec

I/D-Cache: OFF
339,828,586 cycles
6.222 sec

Read: 1 cycle
Write: 1 cycle

Read: 50 cycle
Write: 10 cycle

memory
access

latencies

Summary

•  Trace-driven bus traffic modeling
–  SW workload modeled as “Program Trace Graph”

•  SW workloads steered according to branch bitstreams
(program execution trace)

–  Bus workload triggered by trace-driven SW workloads
•  Reflect detail bus traffics of “real” applications

•  Cache modeling
–  Cache simulation during BB gen. à supports multicore
–  Random bus traffic generation (based on cache statistics

at each memory access) inside workload simulation

Thank You for Your
Attention!

Tsuyoshi Isshiki
isshiki@vlsi.ce.titech.ac.jp

Dept. Communications and Computer Engineering
Tokyo Institute of Technology

