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MPSoC Design Exploration Requirements 

•  HW/SW MPSoC design space exploration 
–  SW: algorithm design, SW partitioning 
–  HW: architecture (CPUs, HW blocks, busses, memories, DMACs) 
–  Mapping: SWsàCPUs, memory mapping 

•  MPSoC architecture evaluation 
–  System performance: cycle counts, power 
–  Locating system bottlenecks: bus/memory bandwidth?, CPUs? caches? 

à  Framework for efficient evaluation of SW/HW design choices 
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Trace-Driven Workload Model 
[@DAC’09, MPSoC’09] 

•  Branch bitstream: Branch condition bit sequence recorded in 
program execution order (via source-level instrumentation and 
native code execution) 

•  Program Trace Graph: degenerate ICFG at basic-blocks 
•  PTG-edge [ei] : code segment without conditional jumps 
•  PTG-edge cycle count [c(ei)] : extracted by compiler backend 
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MPSoC Trace-Driven Workload Simulator 
•  MPSoC Trace-driven workload simulator 

–  Coordinate parallel workload models with system 
synchronization events 

•  CT(thread activation), DT(data transfer), DS(data synch.) 
–  Parameterized MPSoC architecture model 

•  # of processors, interconnect topology 
–  70x ~ 200x speedup over ISS-based simulation 
–  Below 1% cycle estimation error 
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•  Trace-driven bus traffic generation 
–  Triggered by processor communications, accesses to 

memories and IPs 
–  PTG-sync-nodes inside thread-PTGs generate the 

bus traffic sequence with accurate (dynamically 
changing) intervals and payloads according to a 
particular set of thread-BBs 

•  Bus arbitration simulation 
–  Schedules multiple outstanding bus requests to resolve 

bus conflicts 
–  Several standard arbitration schemes supported (fixed 

priority, round-robin, QoS guaranteed) 

Trace-Driven Bus Traffic Simulation 
[@MPSoC’11] 
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•  Bus traffic scheduling done at cycle-accurate level 
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MPSoC Architecture Description with 
Shared-Memories and Bus Bridges 

bridge 
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BusMapping{	

  {P0,M0},            // bus_0 : proc{P0}, mem{M0}	

  {P1,P2,P3,M1,M2 }   // bus_1 : proc{P1,P2,P3}, mem{M1,M2}	

}	

BridgeMapping{	

  {B0, B1} // bus_0 and bus_1 are connected through bridge	

}	


•  DMAs are pragma-annotated in 
SW on particular memcpy calls 

•  DMACs are instantiated 
automatically according to DMA 
annotations	


•  Shared memory allocations are 
pragma-annotated by variable 
names 

à Heap memory, frame buffer, etc.	




Bus Traffic Workload Simulation 

Execution platform 100 frames 1000 frames 
SW exe (Xeon 3.4GHz) 0.165 sec 1.00 1.158 sec 1.00 

Trace-sim (bus:ON) 6.222 sec 37.71 62.871 sec 54.29 
Trace-sim (bus:OFF) 1.203 sec 7.29 12.169 sec 10.51 

Trace-sim (bus:OFF+reduction) 0.684 sec 4.15 6.878 sec 5.94 

•  TinyGL (Open-GL subset) “WHEEL” 3D animation 
à Uses MPSoC model in previous page 

Bus model PTG reduction Simulation time Estimated cycles error  
ON OFF 6.222 sec 339,828,586 --- 
OFF OFF 1.203 sec 328,726,603 3.27% 
OFF ON 0.684 sec 321,540,634 5.38% 

•  Cycle estimation errors are against “bus model = ON” 
•  Bus traffic simulation requires 5x simulation time à very expensive 
•  PTG-edges become more fine-grain when shared memory accesses 

exit (PTG-reduction merges all memory accesses) 



•  Subroutine exe. cycles showing data dependent workloads 

Processor/Bus Workload Profiling 
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•  Workload scheduling details 

Processor/Bus Workload Profiling 
•  Workload percentages 
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Cache Workload Modeling 

•  Cache miss event à dynamic bus traffic generation 
•  Put cache simulator inside or outside the workload simulator? 

–  Inside: accurate, but very slow 
–  Outside: fast, but accuracy may become an issue… 
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Cache Workload Modeling 

•  Assuming we put the cache simulator outside the 
workload simulator, should we put it inside or outside 
the BB generator? 

à  If BB generator with cache simulator runs faster than the 
standalone one, it makes sense to put it inside… 
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123M memory traces (~1GB) 
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BB-gen 0.153 sec 
BB-gen + cache-sim 2.037 sec 
BB-gen + trace output 3.035 sec 

Trace output file access 
overhead is larger than 
cache-sim time 



Cache Workload Modeling 

•  Memory tracing during BB generation 
à Required only for D-cache 
à Instruction trace obtained from PTG-edge seq. 

•  Cache simulator à cache statistics 
–  D-cache: separate statistics at each memory 

access operation 
–  I-cache: separate statistics at each PTG-edge 
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•  MPSoC cache simulation during sequential BB generation 
–  N processors à N cache models 
–  Switch the cache model when crossing the thread 

boundaries during BB gen. 



SW Instrumentation for  
I/D-Cache Tracing	


static void v4dwt_decode_step1(v4 * w, int count, const dwt_real_t c) 
{ 
  dwt_real_t * fw = (dwt_real_t *) w; 
  int i; 
  for(i = 0; _BC_L_(i < count, 121); ++ i){ 
    __Mem_R_PT__(fw[0], 276); 
    fw[0] = ((fw[0] * c) + ((fw[0] * c) & 4096)) >> 13; 
    __Mem_W_PT__(fw[0], 178); 
    __Mem_R_PT__(fw[1], 277); 
    fw[1] = ((fw[1] * c) + ((fw[1] * c) & 4096)) >> 13; 
    __Mem_W_PT__(fw[1], 179); 
    __Mem_R_PT__(fw[2], 278); 
    fw[2] = ((fw[2] * c) + ((fw[2] * c) & 4096)) >> 13; 
    __Mem_W_PT__(fw[2], 180); 
    __Mem_R_PT__(fw[3], 279); 
    fw[3] = ((fw[3] * c) + ((fw[3] * c) & 4096)) >> 13; 
    __Mem_W_PT__(fw[3], 181); 
    fw += 8; 
  } 
} 

Data trace macro: 
WRITE data trace  
at (&fw[3]) with ID = 181 

BB generation macro: 
also used for I-cache trace 

Data traces need to match 
with the generated target 
executable code 
à Requires the target 
compiler framework to do this 



SW-Instrumented Cache Statistics	

======================= Mem-Read Profile ======================= 
...... 
  82       9     11692  04dac230  04dac230  .....1..   (hm->heap_tail_index) 
  83       0     11692  04dac238  04dac238  .....1..   (hm->heap_array) 
  84       0     11692  04dac238  04dac238  .....1..   (hm->heap_array) 
  85     981     11692  0059ed44  005a0400  ffffffff   (*hn_t) 
  86       0     11692  0059ed44  005a0400  ffffffff   (hn_t->block_index) 
  87       1     11692  04dac234  04dac234  .....1..   (hm->alloc_array) 
  88       0         0  00000000  00000000  ........   
------------------------------------------------------- 
----     991     70152  <<< function: remove_heap_node >>> 
======================================================= 

======================================================= 
  12   11950    841824   24  [+] start : update_heap_node 
  13       0         0    3  [+] branch $518 [T] 
  14       0     70152    2  [+] branch $518 [F] 
  15       0         0    1  [+] $521 := my_malloc_error ( $520 ) 
  16       0         0    4  [+] branch $516 [T] 
  17   11694    175380    5  [+] branch $516 [F] 
  18       5    849548   14  [+] branch $522 [T] 
  19   11693     35238    3  [+] branch $522 [F] 
  ................................................................ 
  31       0     93984   22  [+] branch $603 [F] 
------------------------------------------------------- 
----   47056   3822289  171  <<< function: update_heap_node >>> 
======================================================= 
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Accuracy Issues in SW-Instrumented 
Data Cache Statistics	


•  Differences in the data trace from the native code 
and target code à slight deviation in statistics 

•  Not an issue for instruction trace 



Cache Workload Simulation 
(JPEG: 19 threads)	


I/D-Cache: ON 
7,838,891 cycles 
0.127 sec 

I/D-Cache: OFF 
2,980,005 cycles 
0.032 sec 

I/D-Cache(OFF) 
•  Program memory and data 

memory are local 
•  No shared memory access 
I/D-Cache(ON) 
•  Program memory and data 

memory are allocated on the 
same shared memory 

•  I-cache: 4KB, 1-way 
•  D-cache: 4KB, 2-way 
à  cache line size: 64 bytes 
•  Shared memory latencies 

–  Read: 50 cycles 
–  Write: 10 cycles 



Cache Workload Simulation 
(TinyGL: 4 threads, 2 DMACs, 2 shared memories)	


I/D-Cache: ON 
494,542,152 cycles 
2.144 sec 

I/D-Cache: OFF 
1,681,570,743 cycles 
5.034 sec 

I/D-Cache: OFF 
339,828,586 cycles 
6.222 sec 

Read: 1 cycle 
Write: 1 cycle 

Read: 50 cycle 
Write: 10 cycle 

memory 
access 

latencies 



Summary 

•  Trace-driven bus traffic modeling 
–  SW workload modeled as “Program Trace Graph” 

•  SW workloads steered according to branch bitstreams 
(program execution trace) 

–  Bus workload triggered by trace-driven SW workloads 
•  Reflect detail bus traffics of “real” applications 

•  Cache modeling 
–  Cache simulation during BB gen. à supports multicore 
–  Random bus traffic generation (based on cache statistics 

at each memory access) inside workload simulation 
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