AN\ ~\
MPSoC'13

Using Hardware-Assisted Virtualization
for Native Simulation of MPSoC

Frédéric Pétrot, Hao Shen, Mian M. Hamayun

System-Level Synthesis Group
TIMA Laboratory
46, Av Félix Viallet, 38031 Grenoble, France

July 18th, 2013

=

Frédéric Pétrot (TIMA Lab) MPSoC'13 July 18" 2013 1/17

© Introduction
@ Motivations/Issues
@ Memory Representations
@ Chip Memory Mappings vs. SystemC Memory Mapping

© Proposed Solution — Native Simulation using HAV
@ Hardware Assisted Virualization Using KVM
@ Address Translation using Memory Virtualization
@ Using HAV in Event Driven Simulation

© Experiments and Results
@ Computation and /O Speed Comparisons
@ Performance Estimation Results

@ Conclusions and Future Works

Frédéric Pétrot (TIMA Lab) MPSoC'13

July 18", 2013

2

/17

Native Software Execution In MPSoC Simulation

A Technology that can be used for Rapid Architecture Exploration and
Design of MPSoC Systems

Key Ideas of this Talk

@ Simulation of hardware/software systems

@ Focusing on the fast simulation of software
o Within the model of a hardware environment (SystemC/TLM)

@ Support for performance estimation/annotations

v

Clarification

Host: machine on which the simulator is executed (e.g. x86)

Host code: code directly executable on the host
Native code: code executable on the host once linked with a simulator
Target: machine which is simulated (e.g. ARM, MIPS)

Frédéric Pétrot (TIMA Lab)

Introduction ~ Motivations/Issues

Motivations/Issues

Why native simulation?

@ Software is Compiled for Host = Fastest Functional Simulations
@ Software is Executed Natively = No need for ISS Development

@ Software Executes in Zero Time w.r.t H/W = Functional Verification

High Level Application

API (OS/Thread., Libc, com)
@ H/W models use target addresses

whereas S/W uses host addresses Operating
System

o Chip Memory Mapping
o SystemC Memory Mapping

Requirement: MPSoC platform for realistic CPUO l CPU1 |l 1Tc
él éD §| gD

Intra-Communication HW
@ Maximize the source code reusability

CPU2
@ Keep low level hardware details MEM T 13D 2

native simulation

Frédéric Pétrot (TIMA Lab)

MPSoC'13

Introduction ~ Motivations/Issues

Motivations/Issues

Why native simulation?

@ Software is Compiled for Host = Fastest Functional Simulations
@ Software is Executed Natively = No need for ISS Development

@ Software Executes in Zero Time w.r.t H/W = Functional Verification

High Level Application
+ OS model

@ H/W models use target addresses
F{channel-)
whereas S/W uses host addresses

i

o Chip Memory Mapping
o SystemC Memory Mapping

Requirement: MPSoC platform for realistic CPUO m CPU1 |l |Tc
native simulation LS T SD || ST T3$D

Intra-Communication HW

@ Maximize the source code reusability [cPu2 |
@ Keep low level hardware details MEM T 13D 2

Frédéric Pétrot (TIMA Lab) MPSoC'13

Introduction ~ Motivations/Issues

Motivations/Issues

Why native simulation?

@ Software is Compiled for Host = Fastest Functional Simulations
@ Software is Executed Natively = No need for ISS Development

@ Software Executes in Zero Time w.r.t H/W = Functional Verification

High Level Application

API (OS/Thread., Libc, com)
@ H/W models use target addresses

whereas S/W uses host addresses Operating
System

o Chip Memory Mapping
o SystemC Memory Mapping

Requirement: MPSoC platform for realistic CPUO l CPU1 |l 1Tc
él éD §| gD

Intra-Communication HW
@ Maximize the source code reusability

CPU2
@ Keep low level hardware details MEM T 13D 2

native simulation

Frédéric Pétrot (TIMA Lab)

MPSoC'13

Introduction Memorv Representations

Memory Representations

Transaction Accurate Simulation

Real System or CABA Platforms

@ SW dynamically loaded and executed
on the Host

@ HW address decoder uses physical
chip memory mapping

@ SW uses SystemC process memory

@ SW binary loaded in memory

@ HW address decoder uses physical
chip memory mapping

@ SW uses real chip memory

mapping SRR
‘ ISS MEMORY
I$ D$
< 8Interconnect8 >
ADC DMA

Frédéric Pétrot (TIMA Lab) MPSoC'13

Introduction Memorv Representations

Memory Representations

Transaction Accurate Simulation

Real System or CABA Platforms

@ SW dynamically loaded and executed
on the Host

@ HW address decoder uses physical
chip memory mapping

@ SW uses SystemC process memory
mapping

@ SW binary loaded in memory

@ HW address decoder uses physical
chip memory mapping

@ SW uses real chip memory
mapping

A
Cross-compiled [oxoz00010

: 01001110
software binary oor1i0n

i 010010111
iInmemory o010

l

‘ ISS MEMORY
I$ D$
g 43
< Interconnect >
$ ¢
ADC DMA

Frédéric Pétrot (TIMA Lab) MPSoC'13

Introduction Memorv Representations

Real System or CABA Platforms

@ SW binary loaded in memory

@ HW address decoder uses physical

chip memory mapping
@ SW uses real chip memory

mapping

A\

Cross-compiled [oxoz00010

101001110

software binary |is0101101

in memory

Z]

Transaction Accurate Simulation

@ SW dynamically loaded and executed

on the Host

@ HW address decoder uses physical

chip memory mapping

@ SW uses SystemC process memory

mapping

Chip
Memory
mapping

010010111
101011010

l

MEMORY

< 8 Interconnect8 %
¢ 13

ADC

DMA

MEMORY

Frédéric Pétrot (TIMA Lab)

MPSoC'13

Introduction Memorv Representations

Real System or CABA Platforms

@ SW binary loaded in memory

@ HW address decoder uses physical
chip memory mapping

@ SW uses real chip memory

@ SW dynamically loaded and executed
on the Host

@ HW address decoder uses physical
chip memory mapping
@ SW uses SystemC process memory

mappin .
pPINg 4 mapping
Chip

Memory
mapping

Cross-compiled

software binary

in memory T

Transaction Accurate
ll ERET HAL implementation
xec. Unit MEMORY
L

| base: 0x00000000
¢ Y] 5 &

< Interconnect 7 | _ Interconnect _ |
g g

ISS MEMORY

MEMORY I I
AD
ADC DMA base: OXAO(O:OOOOD base!DoxMAQOIOOD
size: 1Kb size: 1Kb

Frédéric Pétrot (TIMA Lab) MPSoC'13

Introduction Memorv Representations

Memory Representations

Real System or CABA Platforms

@ SW binary loaded in memory

@ HW address decoder uses physical

chip memory mapping
@ SW uses real chip memory

mapping

Transaction Accurate Simulation

@ SW dynamically loaded and executed
on the Host

@ HW address decoder uses physical
chip memory mapping

@ SW uses SystemC process memory

Cross-compiled
software binary

in memory

l

MEMORY

/]

< ?}Interconnectg

ADC

DMA

mapping
Chip
Mem(_)ry Dynamically So_ftware dyngmic
mapping loaded % library (.so file)
HAL API
TR
 Transaction Accurate
DAY i HAL implementation
ADC
: MEMORY
xec. Unit base: 0x00000000
0 size: GMIh
L} L}
| Interconnect |
P P
MEMORY I I
ADC DMA
base: 0xA0000000 base: 0xA0001000
size: 1Kb size: 1Kb

Frédéric Pétrot (TIMA Lab)

MPSoC'13

Introduction Memorv Representations

Memory Representations

Real System or CABA Platforms

@ SW binary loaded in memory

@ HW address decoder uses physical

chip memory mapping
@ SW uses real chip memory

mapping

Transaction Accurate Simulation

@ SW dynamically loaded and executed
on the Host

@ HW address decoder uses physical
chip memory mapping

@ SW uses SystemC process memory

Cross-compiled
software binary

in memory

l

MEMORY

/]

< ?}Interconnectg

ADC

DMA

mapping
Chip
Memory D icall Software dynamic
mapping ylrz)aarglecda y\ library (.so file)
HAL API
TR
7 Transaction Accurate
DAY i HAL implementation
ADC
: MEMORY
xec. Unl base: 0x00000000
\ 0 size: GMIh
™ e et
™ Interconnect |
O O
MEMORY I I
ADC DMA
base: 0xA0000000 base: 0xA0001000
size: 1Kb size: 1Kb

Frédéric Pétrot (TIMA Lab)

MPSoC'13

Introduction Memorv Representations

Memory Representations

Transaction Accurate Simulation

Real System or CABA Platforms

@ SW dynamically loaded and executed
on the Host

@ HW address decoder uses physical
chip memory mapping

@ SW uses SystemC process memory

@ SW binary loaded in memory

@ HW address decoder uses physical
chip memory mapping

@ SW uses real chip memory

mappin .
pping mapping
Chip SystemC
Memory Dynamically Software dynamic Memory
mapping loaded | library (.so file) mapping

Cross-compiled
software binary
in memory

HAL API N\
H Transac Accurate
I
— ADC
1SS Unit MEMORY
MEMORY xec. ni base: 0x00000000

5] D% - size: 4Mb

g g N 1
< Interconnect N Interconnect _ |
g g

SW.so

MEMORY I I
ADC DMA ST L
size: 1Kb size: 1Kb

c Pétrot (TIMA Lab) MPSoC'13

Introduction ~ Chip Memorv Mappings vs. SvstemC Memorv Mapping

Problem

Two uncorrelated memory mappings have to be considered

Chip Memory Mapping (1)

@ Defined by the HW designers (1) (2)
Chip d— SystemC
@ Used by the address decoder at Memory | pynamically [Software dynamic Memory
. 3 . mapping loaded | library (.so file) mapping
simulation time
~ HAL API
B = ransactlon Accurate sw
SystemC Memory Mapping (2) 2 HAL implementation
. MEMORY
@ Shared by the SW stack | base: 0x0000000
@ Host machine dependent HEoRY
Interconnect

@ Contains standard sections
) Program in .text base: ouooooooo base: onoooxooo
. . . size: 1Kb size: 1Kb

o Initialized data in .data
o Uninitialized data in .bss

Frédéric Pétrot (TIMA Lab) MPSoC'13

Introduction ~ Chip Memorv Mappings vs. SvstemC Memorv Mapping

Problem

Two uncorrelated memory mappings have to be considered

Chip Memory Mapping (1)

@ Defined by the HW designers (1) (2)
Chip d— SystemC
@ Used by the address decoder at Memory | pynamically [Software dynamic Memory
. 3 . mapping loaded | library (.so file) mapping
simulation time
v HAL API SW.s0
— bss
B o ransactlon Accurate data
SystemC Memory Mapping (2) — HAL implementaton —
. MEMORY
@ Shared by the SW stack | base: 0x0000000
_ ' g

MEMORY

@ Host machine dependent
Interconnect

@ Contains standard sections
) Program in .text base: ouooooooo base: onoooxooo
. . . size: 1Kb size: 1Kb

o Initialized data in .data
o Uninitialized data in .bss

Frédéric Pétrot (TIMA Lab) MPSoC'13

Introduction ~ Chip Memorv Mappings vs. SvstemC Memorv Mapping

Problem

Two uncorrelated memory mappings have to be considered

Chip Memory Mapping (1)

@ Defined by the HW designers (1) (2)
Chip d— SystemC
@ Used by the address decoder at Memory | pynamically [Software dynamic Memory
. 3 . mapping loaded | library (.so file) mapping
simulation time
W HAL API SW.so
— bss
B o ransactlon Accurate data
SystemC Memory Mapping (2) — HAL implementaton —
. MEMORY
@ Shared by the SW stack | base: 0x0000000
@ Host machine dependent MERORY L
i . Interconnect
@ Contains standard sections 2
() Program in .text text base: ouooooooo base: onoooxooo
. . . size: 1Kb size: 1Kb
o Initialized data in .data
o Uninitialized data in .bss

A

Frédéric Pétrot (TIMA Lab)

MPSoC'13

Introduction ~ Chip Memorv Mappings vs. SvstemC Memorv Mapping

Mixing both memory mappings 7

DMA Transfer Example

@ Read data in the ADC

@ Write data into memory (1) (2)
o Chip A] SystemC
Memory Dynamically Software dyngmic Memory
Source in Chlp Mapplng (1) mapping loaded 4.-5 library (.so file) mapping
X Lo < HAL API SW.s0.
@ Source address is valid in address z bss
¢ Transaction Accurate .data
decoder DMA i HAL implementation
ADC text
@ So DMA can access source) MEMORY
xec. Unl b 0x00000000
ddress size: 4
a J = 1

MEMORY

Destination in SystemC Mapping (2) =

@ Destination address is valid in SW

@ But /nvalid in the address decoder

@ So DMA cannot access the
destination address

Interconnect _ |
O o

base: 0xA0001000
size: 1Kb

A

c Pétrot (TIMA Lab) MPSoC'13

Introduction

Mixing both memory mappings 7

Chip Memorv Mappings vs. SvstemC Memorv Mapping

DMA Transfer Example

@ Read data in the ADC
@ Write data into memory

A

Source in Chip Mapping (1)

@ Source address is valid in address
decoder

@ So DMA can access source
address

V.

Destination in SystemC Mapping (2)

@ Destination address is valid in SW
@ But /nvalid in the address decoder

@ So DMA cannot access the
destination address

(1)

Chip
Memory
mapping

i Software dynamic
Dynamicall 3
yIoaded y§ library (.so file)
HAL API

(2)

SystemC
Memory
mapping

MEMORY

SW.s0.
bss

¢ Transaction Accurate
¢ HAL implementation

MEMORY
ase: 0x00000000
ize: 4Mb

(]

.data

text

base: 0xA0001000
size: 1Kb

A

c Pétrot (TIMA Lab)

MPSoC'13

Introduction

Mixing both memory mappings 7

Chip Memorv Mappings vs. SvstemC Memorv Mapping

DMA Transfer Example

@ Read data in the ADC
@ Write data into memory

(1)

A

Source in Chip Mapping (1)

@ Source address is valid in address
decoder

@ So DMA can access source
address

Chip
Memory
mapping

Software dynamic
library (.so file)

Dynamically
loaded]

(2)
SystemC
Memory
mapping

HAL API

V.

Destination in SystemC Mapping (2)

@ Destination address is valid in SW
@ But /nvalid in the address decoder

@ So DMA cannot access the
destination address

MEMORY

MEMQRY
ase: 0x00000000
ize: 4Mb {

\\ SW.so
" data”’

text

base: 0xA0001000
size: 1Kb

A

c Pétrot (TIMA Lab)

MPSoC'13

Introduction ~ Chip Memorv Mappings vs. SvstemC Memorv Mapping

Mixing both memory mappings 7

DMA Transfer Example

@ Read data in the ADC

@ Write data into memory (1) (2)
- Chip SystemC
Memory Dynamically Software dynamic Memory
. . . i lib .so fil i
Source in Chip Mapping (1) [orene loaded f forany (sofile mapping

HAL API \\ SW.so
ey

text

@ Source address is valid in address
decoder

@ So DMA can access source
address

V.

MEMORY

Destination in SystemC Mapping (2) =

@ Destination address is valid in SW rext R perrT mﬁmoo

@ But /nvalid in the address decoder __

@ So DMA cannot access the
destination address

A

c Pétrot (TIMA Lab) MPSoC'13

Proposed Solution — Native Simulation using HAV Hardware Assisted Virualization Using KVM

HW Support for CPU Virtualization

Saved by virtualization's needs in the software industry!

New Guest Operating Mode

@ Hardware Support for Root and Non-Root operations

o Root Operations for VMM and Non-Root for Guest System
@ Hardware Based Guest <-> Host Mode Switching
@ Guest Mode Exit Reason Reporting

e PMIO, MMIOQ, Signal Pending, Shutdown ?

Available in most popular CPUs since the mid 2000's:
x86 (Intel, AMD), Power, Cortex A15 (ARM), Sparc, ...

New Transitions

VM Control Structure (VMCS)

e VM Entry and VM Exit @ Controlled by software

@ Swapping of Registers and
Address Space in one Atomic

Operation e Controls when VM Exits occur

@ Keeps track of Guest OS State

Frédéric Pétrot (TIMA Lab) MPSoC'13

Proposed Solution — Native Simulation using HAV

Address Translation using Memorv Virtualization

HW Support for Memory Virtualization

HAV based Memory Virtualization

@ Software is Compiled as a
Static binary and executes in
Target Address-Space

@ SystemC models simulate
target addresses and remain
un-modified

@ Translation layer provides
bidirectional accesses between
SW and HW components.

v

Hard-coded addresses in SW

Even hard-coded addresses can be

used in Software i.e.
((uint8_t *) 0x0A000010) = 0x33;

v

(1)
Chip
Memory
mapping

DMA
ADC

MEMORY

Memory Virtualization != Virtual Memory

Frédéric Pétrot (TIMA Lab) MPSoC'13

(2)

SystemC
Memory
mapping

MEMORY

sw

.bss

.data

text

Proposed Solution — Native Simulation using HAV ~ Address Translation using Memorv Virtualization

HW Support for Memory Virtualization

HAV based Memory Virtualization

@ Software is Compiled as a

Static binary and executes in (1) (3) @
Target Add reSS'Space Chip Address SystemC
. Memory Trans. Memory
@ SystemC models simulate mapping Layer mapping
target addresses and remain
un-modified MEMORY
DMA sw
@ Translation layer provides Anc bss
.data
bidirectional accesses between —
SW and HW components. MEMORY
o SW

. data
Hard-coded addresses in SW — A

Even hard-coded addresses can be

used in Software i.e.
((uint8_t *) 0x0A000010) = 0x33;

v

Memory Virtualization != Virtual Memory

Frédéric Pétrot (TIMA Lab) MPSoC'13

Proposed Solution — Native Simulation using HAV ~ Address Translation using Memorv Virtualization

HW Support for Memory Virtualization

HAV based Memory Virtualization

@ Software is Compiled as a
Static binary and executes in

(1) (3) (2)
Target Add reSS'Space Chip Address SystemC
. Memory Trans. Memory
@ SystemC models simulate mapping Layer mapping
target addresses and remain
un-modified MEMORY
DMA B S sw
@ Translation layer provides aoc_f| <—> bss
.data
bidirectional accesses between —
SW and HW components. MEMORY
’ Sbv:s ADC
. data
Hard-coded addresses in SW — A
Even hard-coded addresses can be

used in Software i.e.
((uint8_t *) 0x0A000010) = 0x33;

v

Memory Virtualization != Virtual Memory

Frédéric Pétrot (TIMA Lab) MPSoC'13

Proposed Solution — Native Simulation using HAV ~ Using HAV in Event Driven Simulation

Using HAV in Event Driven Simulation

Software Stack
Transparent Memory Accesses i

Ih':

. IS
o e (=]
25 5|25
@ Using the Virtual MMU 23 o S — §lax
R Aoy %3 Embedded |Com | — T |2 |= =
implementation in KVM EE e b M:::’C -z g
. - o
o Full address space available in 5 et AL AP >z
Host Dependent HAL ° =
Guest mode =
- - VM E VM Exi R
@ Transparent access i.e. No 59 nter [y VM Ext (+Reason)
d itch 52 [KVM Kernel Driver
mode switch on memory * 10CTLs H Callbacks
accesses
> [KVM User Space lerary J H 5
n
t i u g
1 Interrupt MMIO Serm o m
|/O EmU|at|0n E {Control\er}{Accesses] Hostmg E ';-
= o
e I/O (MMIO & PMIO) accesses ¥
force VM Exits §§[Y } ‘ CcPU MEM .-]»
. . nQ
o We exploit PMIO exits for 38 1 = ‘gg
providing Semi-hosting support. Hy %GENER@;';TWOR%K\AF% .gg
. >
e.g. Annotations)
y l ADC } l DMA } [BLOCK]

Frédéric Pétrot (TIMA Lab) MPSoC'13

Experiments and Results = Computation and |/O Speed Comparisons

Computation Speed Comparisons

_ 50 QEMU e
] 25 | Native mwwm
2 KVM 222
§ 10 =
& °r]
g
£ 1of .
- 05]
S
s
3 01 -
£ 0.05 - 4
s
(o]
0.01 : L . A A i : A . . . ﬂs(‘,
> N o)
0500 o000 X Sy e XA o, picia ¥ gy gae¥ o120 (acaXEcouRioedkS 1oedk1OgingSeacra0e
10000
QEMU ——
Native ---><---
1000 = KVM 3K
/ Simatation Plattorm_||_Best-Case | Worst-Case Total Time
100 i Rijndael Djpeg All Applications
g ” QEMU 18.081s 1.033s 104.099s
g " KVM 0.376s 0.148s 5.814s
[} . Speedup/Slowdown 48.10X 6.96X 17.91X
@
E x Dijkstra Rijndael All Applications
ot e Native 1.185s 0.246s 6.104s
K KVM 0.846s 0.376s 5.814s
0.01 Speedup/Slowdown 1.40X 0.66X 1.05X
0.001 P S
1 2K 5K 10K 20K 30K 40K 50K 75K 100K

Pi Accuracy (Decimal Digits)

Frédéric Pétrot (TIMA Lab MPSoC'13 July 18"

Experiments and Results

Computation and 1/0O Speed Comparisons

|/O Speed Comparisons & Slowdown w.r.t Direct Host

Time (Seconds)

Time (Seconds)

QEMU mmmm
1000 - Naive e
KVM
—_ 100
m
2
5 10
g
& 10
°
£ 0.1
=
g 0.01
0.001
0.0001 S ‘ 7EY
JROST ST SIS JUS ST RO P BT RUNZS PR G s L SIS LTRSS o
140 QEMU —+—
b . . Best-Case Worst-Case Total Time
120
" Nt % Simulation Platform Blowfish | StringSearch | Al Applications
QEMU 314.190s 155.247s 916.112s
&0 X KVM 35.768s 385.6505 708.708s
& N Speedup/Slowdown 8.78X 0.40X 129X
40
2 TS Cjpeg Qsort All Applications
ST ¥ * ¥ % ¥ % X ¥ ¢ Native 3.271s 48.946s 545.136s
Pa— 8 16 64 25 512 1024 4096 KVM 1.801s 113.054s 708.708s
Block Size (Bytes) Speedup/Slowdown 1.82X 0.43X 0.77X
60
QEMU ——
Native --->¢---
* K - 3% [[FHost | QEMU | Natve KVM
40
Comp. Time 4.127s 104.099s 6.104s 5.814s
o N Comp. Slowdown X 25.23X 1.48X 1.41X
20 P 1/0 Time 3.528s 916.112s 545.136s | 708.708s
- 1/0 Slowdown X 259.69X 154.53X 200.90X
. A 3 Total Time 7.654s 1020.211s | 551.240s | 714.522s
1 2 4 8 16 64 256 512 1024 4096 Total Slowdown 1X 133.28X 72.02X 93.35X

String Size (Bytes)

Frédéric Pétrot (TIMA Lab

MPSoC'13

July 18"

Experiments and Results = Performance Estimation Results

Simulation Performance with S/W Annotations

@
K]
2
s
8
3
12
3
8
g
§
E
5
T
5
o
c
=]
K
S
£
(2]

100000
W/O Annotations, W/O Buffers —+—
X Annotations, W/O Buffers ---
10000 ot AN Annotations, Buffer-64 ---
- Annotations, Buffer-256
R SO —— .. Annotations, Buffer-1024
1000 = = e

100

10,

A

0
qusa™® geoti0 a0 ok e e (00 caRS ooun™® Gped®® piped ™ gingSe?

Buffer Size Bfast-Case Wc?rst-Case Avg. Slowdown
StringSearch BitCount All Apps
0 10.38X 1862.38X 84.56X
64 1.20X 39.69X 2.83X
256 1.08X 17.00X 1.77X
1024 1.04X 11.12X 1.49X

Frédéric Pétrot (TIMA Lab) MPSoC'13

Experiments and Results

Performance Estimation Results

Accuracy of S/W Annotations in Native Simulation

1e+11
Instructions-QEMU —4—
Instructions-KVM -~
- CPU-Cycles-QEMU -
g CPU-Cycles-KVM - 4
z
(2]
qsott Dijkst® plowfis qijngae! sha CRC32 gircount Giped Diped SringSe
10 -
g " ~f
-20
- a el ~ol —An0 ~~nnt - - ~ae
Best-Case Worst-Case Average Error
Error Type = - —
Rijndael StringSearch | All Applications
Error Instructions -0.02% -16.60% -3.95%
Error CPU-Cycles +0.55% -14.06% 2.77%
Abs. Error Instructions 0.02% 16.60% 5.80%
Abs. Error CPU-Cycles 0.55% 14.06% 5.36%

Frédéric Pétrot (TIMA Lab)

MPSoC'13

Conclusions and Future Works
Conclusions and Future Works

Conclusions

@ HAV provides a novel way of implementing native simulation

@ Memory virtualization solves the conflicting address-spaces issue

@ Support for complex MPSoC architectures and legacy software is
possible as shared memories can be modeled tranparently

@ Simulation performance very close to previous native solutions

@ |/O performance is a bottle-neck, as all I/O requests must trap

e S/W debugging support is currently not available in KVM

Future Directions

@ Finding a solution to minimize the Guest-to-Host transitions

@ Devising a translation scheme for complex architecture simulation
e.g. VLIW Machines

@ Improving the annotation technique to increase estimation accuracy

Frédéric Pétrot (TIMA Lab)

Related Publications
Related Publications

@ Mian-Muhammad Hamayun, Frédéric Pétrot and Nicolas Fournel. Native
simulation of complex VLIW instruction sets using static binary translation
and Hardware-Assisted Virtualization. In Proceedings of the 18th Asia and
South Pacific Design Automation Conference, pages 576-581, 2013

© Hao Shen, Mian-Muhammad Hamayun, and Frédéric Pétrot. Native
Simulation of MPSoC Using Hardware-Assisted Virtualization /EEE
Transaction on Computer Aided Design of Integrated Circuits and
Systems, Vol. 31, n° 7, pages 1074-1087, 2012

© Patrice Gerin, Mian Muhammad Hamayun, and Frédéric Pétrot. Native
mpsoc co-simulation environment for software performance estimation. In
Proceedings of the 7th International Conference on Hardware/Software
Codesign and System Synthesis, pages 403-412, 20009.

@ Patrice Gerin, Xavier Guerin, and Frédéric Pétrot. Efficient
Implementation of Native Software Simulation for MPSoC. In Proceedings
of Design, Automation and Test in Europe, pages 676-681, 2008.

Frédéric Pétrot (TIMA Lab) MPSoC'13

Questions & Answers
Questions & Answers

Thanks for Your Attention

Questions ?

Frédéric Pétrot (TIMA Lab) MPSoC'13

	Introduction
	Motivations/Issues
	Memory Representations
	Chip Memory Mappings vs. SystemC Memory Mapping

	Proposed Solution – Native Simulation using HAV
	Hardware Assisted Virualization Using KVM
	Address Translation using Memory Virtualization
	Using HAV in Event Driven Simulation

	Experiments and Results
	Computation and I/O Speed Comparisons
	Performance Estimation Results

	Conclusions and Future Works

