
MPSoC'13

Using Hardware-Assisted Virtualization
for Native Simulation of MPSoC

Frédéric Pétrot, Hao Shen, Mian M. Hamayun

System-Level Synthesis Group
TIMA Laboratory

46, Av Félix Viallet, 38031 Grenoble, France

July 18th, 2013

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 1 / 17



1 Introduction
Motivations/Issues
Memory Representations
Chip Memory Mappings vs. SystemC Memory Mapping

2 Proposed Solution – Native Simulation using HAV
Hardware Assisted Virualization Using KVM
Address Translation using Memory Virtualization
Using HAV in Event Driven Simulation

3 Experiments and Results
Computation and I/O Speed Comparisons
Performance Estimation Results

4 Conclusions and Future Works

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 2 / 17



Introduction

Native Software Execution In MPSoC Simulation

A Technology that can be used for Rapid Architecture Exploration and
Design of MPSoC Systems

Key Ideas of this Talk

Simulation of hardware/software systems

Focusing on the fast simulation of software

Within the model of a hardware environment (SystemC/TLM)

Support for performance estimation/annotations

Clarification

Host: machine on which the simulator is executed (e.g. x86)

Host code: code directly executable on the host

Native code: code executable on the host once linked with a simulator

Target: machine which is simulated (e.g. ARM, MIPS)

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 3 / 17



Introduction Motivations/Issues

Motivations/Issues

Why native simulation?

Software is Compiled for Host ⇒ Fastest Functional Simulations

Software is Executed Natively ⇒ No need for ISS Development

Software Executes in Zero Time w.r.t H/W ⇒ Functional Verification

Key Issue

H/W models use target addresses
whereas S/W uses host addresses

Chip Memory Mapping
SystemC Memory Mapping

Requirement: MPSoC platform for realistic
native simulation

Maximize the source code reusability

Keep low level hardware details

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 4 / 17



Introduction Motivations/Issues

Motivations/Issues

Why native simulation?

Software is Compiled for Host ⇒ Fastest Functional Simulations

Software is Executed Natively ⇒ No need for ISS Development

Software Executes in Zero Time w.r.t H/W ⇒ Functional Verification

Key Issue

H/W models use target addresses
whereas S/W uses host addresses

Chip Memory Mapping
SystemC Memory Mapping

Requirement: MPSoC platform for realistic
native simulation

Maximize the source code reusability

Keep low level hardware details

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 4 / 17



Introduction Motivations/Issues

Motivations/Issues

Why native simulation?

Software is Compiled for Host ⇒ Fastest Functional Simulations

Software is Executed Natively ⇒ No need for ISS Development

Software Executes in Zero Time w.r.t H/W ⇒ Functional Verification

Key Issue

H/W models use target addresses
whereas S/W uses host addresses

Chip Memory Mapping
SystemC Memory Mapping

Requirement: MPSoC platform for realistic
native simulation

Maximize the source code reusability

Keep low level hardware details

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 4 / 17



Introduction Memory Representations

Memory Representations

Real System or CABA Platforms

SW binary loaded in memory
HW address decoder uses physical
chip memory mapping
SW uses real chip memory
mapping

Transaction Accurate Simulation

SW dynamically loaded and executed
on the Host
HW address decoder uses physical
chip memory mapping
SW uses SystemC process memory
mapping

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 5 / 17



Introduction Memory Representations

Memory Representations

Real System or CABA Platforms

SW binary loaded in memory
HW address decoder uses physical
chip memory mapping
SW uses real chip memory
mapping

Transaction Accurate Simulation

SW dynamically loaded and executed
on the Host
HW address decoder uses physical
chip memory mapping
SW uses SystemC process memory
mapping

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 5 / 17



Introduction Memory Representations

Memory Representations

Real System or CABA Platforms

SW binary loaded in memory
HW address decoder uses physical
chip memory mapping
SW uses real chip memory
mapping

Transaction Accurate Simulation

SW dynamically loaded and executed
on the Host
HW address decoder uses physical
chip memory mapping
SW uses SystemC process memory
mapping

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 5 / 17



Introduction Memory Representations

Memory Representations

Real System or CABA Platforms

SW binary loaded in memory
HW address decoder uses physical
chip memory mapping
SW uses real chip memory
mapping

Transaction Accurate Simulation

SW dynamically loaded and executed
on the Host
HW address decoder uses physical
chip memory mapping
SW uses SystemC process memory
mapping

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 5 / 17



Introduction Memory Representations

Memory Representations

Real System or CABA Platforms

SW binary loaded in memory
HW address decoder uses physical
chip memory mapping
SW uses real chip memory
mapping

Transaction Accurate Simulation

SW dynamically loaded and executed
on the Host
HW address decoder uses physical
chip memory mapping
SW uses SystemC process memory
mapping

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 5 / 17



Introduction Memory Representations

Memory Representations

Real System or CABA Platforms

SW binary loaded in memory
HW address decoder uses physical
chip memory mapping
SW uses real chip memory
mapping

Transaction Accurate Simulation

SW dynamically loaded and executed
on the Host
HW address decoder uses physical
chip memory mapping
SW uses SystemC process memory
mapping

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 5 / 17



Introduction Memory Representations

Memory Representations

Real System or CABA Platforms

SW binary loaded in memory
HW address decoder uses physical
chip memory mapping
SW uses real chip memory
mapping

Transaction Accurate Simulation

SW dynamically loaded and executed
on the Host
HW address decoder uses physical
chip memory mapping
SW uses SystemC process memory
mapping

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 5 / 17



Introduction Chip Memory Mappings vs. SystemC Memory Mapping

Problem

Two uncorrelated memory mappings have to be considered

Chip Memory Mapping (1)

Defined by the HW designers

Used by the address decoder at
simulation time

SystemC Memory Mapping (2)

Shared by the SW stack

Host machine dependent

Contains standard sections

Program in .text

Initialized data in .data

Uninitialized data in .bss

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 6 / 17



Introduction Chip Memory Mappings vs. SystemC Memory Mapping

Problem

Two uncorrelated memory mappings have to be considered

Chip Memory Mapping (1)

Defined by the HW designers

Used by the address decoder at
simulation time

SystemC Memory Mapping (2)

Shared by the SW stack

Host machine dependent

Contains standard sections

Program in .text

Initialized data in .data

Uninitialized data in .bss

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 6 / 17



Introduction Chip Memory Mappings vs. SystemC Memory Mapping

Problem

Two uncorrelated memory mappings have to be considered

Chip Memory Mapping (1)

Defined by the HW designers

Used by the address decoder at
simulation time

SystemC Memory Mapping (2)

Shared by the SW stack

Host machine dependent

Contains standard sections

Program in .text

Initialized data in .data

Uninitialized data in .bss

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 6 / 17



Introduction Chip Memory Mappings vs. SystemC Memory Mapping

Mixing both memory mappings ?

DMA Transfer Example

Read data in the ADC
Write data into memory

Source in Chip Mapping (1)

Source address is valid in address
decoder
So DMA can access source
address

Destination in SystemC Mapping (2)

Destination address is valid in SW
But Invalid in the address decoder
So DMA cannot access the
destination address

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 7 / 17



Introduction Chip Memory Mappings vs. SystemC Memory Mapping

Mixing both memory mappings ?

DMA Transfer Example

Read data in the ADC
Write data into memory

Source in Chip Mapping (1)

Source address is valid in address
decoder
So DMA can access source
address

Destination in SystemC Mapping (2)

Destination address is valid in SW
But Invalid in the address decoder
So DMA cannot access the
destination address

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 7 / 17



Introduction Chip Memory Mappings vs. SystemC Memory Mapping

Mixing both memory mappings ?

DMA Transfer Example

Read data in the ADC
Write data into memory

Source in Chip Mapping (1)

Source address is valid in address
decoder
So DMA can access source
address

Destination in SystemC Mapping (2)

Destination address is valid in SW
But Invalid in the address decoder
So DMA cannot access the
destination address

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 7 / 17



Introduction Chip Memory Mappings vs. SystemC Memory Mapping

Mixing both memory mappings ?

DMA Transfer Example

Read data in the ADC
Write data into memory

Source in Chip Mapping (1)

Source address is valid in address
decoder
So DMA can access source
address

Destination in SystemC Mapping (2)

Destination address is valid in SW
But Invalid in the address decoder
So DMA cannot access the
destination address

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 7 / 17



Proposed Solution – Native Simulation using HAV Hardware Assisted Virualization Using KVM

HW Support for CPU Virtualization

Saved by virtualization’s needs in the software industry!

New Guest Operating Mode

Hardware Support for Root and Non-Root operations

Root Operations for VMM and Non-Root for Guest System

Hardware Based Guest <-> Host Mode Switching

Guest Mode Exit Reason Reporting

PMIO, MMIO, Signal Pending, Shutdown ?

Available in most popular CPUs since the mid 2000’s:
x86 (Intel, AMD), Power, Cortex A15 (ARM), Sparc, ...

New Transitions

VM Entry and VM Exit

Swapping of Registers and
Address Space in one Atomic
Operation

VM Control Structure (VMCS)

Controlled by software

Keeps track of Guest OS State

Controls when VM Exits occur

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 8 / 17



Proposed Solution – Native Simulation using HAV Address Translation using Memory Virtualization

HW Support for Memory Virtualization

HAV based Memory Virtualization

Software is Compiled as a
Static binary and executes in
Target Address-Space

SystemC models simulate
target addresses and remain
un-modified

Translation layer provides
bidirectional accesses between
SW and HW components.

Hard-coded addresses in SW

Even hard-coded addresses can be
used in Software i.e.
((uint8 t *) 0x0A000010) = 0x33;

Memory Virtualization != Virtual Memory
Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 9 / 17



Proposed Solution – Native Simulation using HAV Address Translation using Memory Virtualization

HW Support for Memory Virtualization

HAV based Memory Virtualization

Software is Compiled as a
Static binary and executes in
Target Address-Space

SystemC models simulate
target addresses and remain
un-modified

Translation layer provides
bidirectional accesses between
SW and HW components.

Hard-coded addresses in SW

Even hard-coded addresses can be
used in Software i.e.
((uint8 t *) 0x0A000010) = 0x33;

Memory Virtualization != Virtual Memory
Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 9 / 17



Proposed Solution – Native Simulation using HAV Address Translation using Memory Virtualization

HW Support for Memory Virtualization

HAV based Memory Virtualization

Software is Compiled as a
Static binary and executes in
Target Address-Space

SystemC models simulate
target addresses and remain
un-modified

Translation layer provides
bidirectional accesses between
SW and HW components.

Hard-coded addresses in SW

Even hard-coded addresses can be
used in Software i.e.
((uint8 t *) 0x0A000010) = 0x33;

Memory Virtualization != Virtual Memory
Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 9 / 17



Proposed Solution – Native Simulation using HAV Using HAV in Event Driven Simulation

Using HAV in Event Driven Simulation

Transparent Memory Accesses

Using the Virtual MMU
implementation in KVM

Full address space available in
Guest mode

Transparent access i.e. No
mode switch on memory
accesses

I/O Emulation

I/O (MMIO & PMIO) accesses
force VM Exits

We exploit PMIO exits for
providing Semi-hosting support.
e.g. Annotations

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 10 / 17



Experiments and Results Computation and I/O Speed Comparisons

Computation Speed Comparisons

0.01

0.05

0.1

0.5

1.0

5

10

25

50

SusanX5
QsortX100

DijkstraX10
Dijkstra*X10

PatriciaX5
Patricia*X5

BlowfishX5
RijndaelX5

ShaX20
CRC32X5

BitCountX5
CjpegX5

DjpegX10
StringSearchX250

Average

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
) QEMU

Native
KVM
Host

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1K 2K 5K 10K 20K 30K 40K 50K 75K 100K

T
im

e
 (

S
e
c
o
n
d
s
)

Pi Accuracy (Decimal Digits)

QEMU
Native

KVM

Simulation Platform
Best-Case Worst-Case Total Time
Rijndael Djpeg All Applications

QEMU 18.081s 1.033s 104.099s

KVM 0.376s 0.148s 5.814s

Speedup/Slowdown 48.10X 6.96X 17.91X

Dijkstra Rijndael All Applications

Native 1.185s 0.246s 6.104s

KVM 0.846s 0.376s 5.814s

Speedup/Slowdown 1.40X 0.66X 1.05X

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 11 / 17



Experiments and Results Computation and I/O Speed Comparisons

I/O Speed Comparisons & Slowdown w.r.t Direct Host

0.0001

0.001

0.01

0.1

1.0

10

100

1000

SusanX5
QsortX100

DijkstraX10
Dijkstra*X10

PatriciaX5
Patricia*X5

BlowfishX5
RijndaelX5

ShaX20
CRC32X5

BitCountX5
CjpegX5

DjpegX10
StringSearchX250

Average

I/
O

 T
im

e
 (

S
e
c
o
n
d
s
)

QEMU
Native

KVM
Host

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 64 256 512 1024 4096

T
im

e
 (

S
e
c
o
n
d
s
)

Block Size (Bytes)

QEMU
Native

KVM

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16 64 256 512 1024 4096

T
im

e
 (

S
e
c
o
n
d
s
)

String Size (Bytes)

QEMU
Native

KVM

Simulation Platform
Best-Case Worst-Case Total Time
Blowfish StringSearch All Applications

QEMU 314.190s 155.247s 916.112s

KVM 35.768s 385.659s 708.708s

Speedup/Slowdown 8.78X 0.40X 1.29X

Cjpeg Qsort All Applications

Native 3.271s 48.946s 545.136s

KVM 1.801s 113.054s 708.708s

Speedup/Slowdown 1.82X 0.43X 0.77X

Host QEMU Native KVM

Comp. Time 4.127s 104.099s 6.104s 5.814s

Comp. Slowdown 1X 25.23X 1.48X 1.41X
I/O Time 3.528s 916.112s 545.136s 708.708s

I/O Slowdown 1X 259.69X 154.53X 200.90X
Total Time 7.654s 1020.211s 551.240s 714.522s

Total Slowdown 1X 133.28X 72.02X 93.35X

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 12 / 17



Experiments and Results Performance Estimation Results

Simulation Performance with S/W Annotations

 1

 10

 100

 1000

 10000

 100000

SusanX5
QsortX100

DijkstraX10
PatriciaX5

BlowfishX5
RijndaelX5

ShaX20
CRC32X5

BitCountX5
CjpegX5

DjpegX10
StringSearchX250

S
im

u
la

ti
o
n
 P

e
rf

o
rm

a
n
c
e
 (

S
e
c
o
n
d
s
)

W/O Annotations, W/O Buffers
Annotations, W/O Buffers

Annotations, Buffer-64
Annotations, Buffer-256

Annotations, Buffer-1024

Buffer Size
Best-Case Worst-Case Avg. Slowdown

StringSearch BitCount All Apps
0 10.38X 1862.38X 84.56X

64 1.20X 39.69X 2.83X
256 1.08X 17.00X 1.77X

1024 1.04X 11.12X 1.49X

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 13 / 17



Experiments and Results Performance Estimation Results

Accuracy of S/W Annotations in Native Simulation

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

Qsort Dijkstra
Blowfish

Rijndael
Sha CRC32

BitCount
Cjpeg Djpeg StringSearch

S
im

u
la

ti
o
n
 A

c
c
u
ra

c
y

Instructions-QEMU
Instructions-KVM

CPU-Cycles-QEMU
CPU-Cycles-KVM

-20

-15

-10

-5

 0

 5

 10

Qsort Dijkstra
Blowfish

Rijndael
Sha CRC32

BitCount
Cjpeg Djpeg StringSearch

E
s
ti
m

a
ti
o
n
 E

rr
o
r 

(%
) Error Instructions

Error CPU-Cycles

Error Type
Best-Case Worst-Case Average Error
Rijndael StringSearch All Applications

Error Instructions -0.02% -16.60% -3.95%
Error CPU-Cycles +0.55% -14.06% -2.77%

Abs. Error Instructions 0.02% 16.60% 5.80%
Abs. Error CPU-Cycles 0.55% 14.06% 5.36%

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 14 / 17



Conclusions and Future Works

Conclusions and Future Works

Conclusions

HAV provides a novel way of implementing native simulation

Memory virtualization solves the conflicting address-spaces issue

Support for complex MPSoC architectures and legacy software is
possible as shared memories can be modeled tranparently

Simulation performance very close to previous native solutions

Limitations

I/O performance is a bottle-neck, as all I/O requests must trap

S/W debugging support is currently not available in KVM

Future Directions

Finding a solution to minimize the Guest-to-Host transitions

Devising a translation scheme for complex architecture simulation
e.g. VLIW Machines

Improving the annotation technique to increase estimation accuracy

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 15 / 17



Related Publications

Related Publications

1 Mian-Muhammad Hamayun, Frédéric Pétrot and Nicolas Fournel. Native
simulation of complex VLIW instruction sets using static binary translation
and Hardware-Assisted Virtualization. In Proceedings of the 18th Asia and
South Pacific Design Automation Conference, pages 576-581, 2013

2 Hao Shen, Mian-Muhammad Hamayun, and Frédéric Pétrot. Native
Simulation of MPSoC Using Hardware-Assisted Virtualization IEEE
Transaction on Computer Aided Design of Integrated Circuits and
Systems, Vol. 31, n◦ 7, pages 1074-1087, 2012

3 Patrice Gerin, Mian Muhammad Hamayun, and Frédéric Pétrot. Native
mpsoc co-simulation environment for software performance estimation. In
Proceedings of the 7th International Conference on Hardware/Software
Codesign and System Synthesis, pages 403–412, 2009.

4 Patrice Gerin, Xavier Guerin, and Frédéric Pétrot. Efficient
Implementation of Native Software Simulation for MPSoC. In Proceedings
of Design, Automation and Test in Europe, pages 676-681, 2008.

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 16 / 17



Questions & Answers

Questions & Answers

Thanks for Your Attention

Questions ?

Frédéric Pétrot (TIMA Lab) MPSoC’13 July 18th, 2013 17 / 17


	Introduction
	Motivations/Issues
	Memory Representations
	Chip Memory Mappings vs. SystemC Memory Mapping

	Proposed Solution – Native Simulation using HAV
	Hardware Assisted Virualization Using KVM
	Address Translation using Memory Virtualization
	Using HAV in Event Driven Simulation

	Experiments and Results
	Computation and I/O Speed Comparisons
	Performance Estimation Results

	Conclusions and Future Works

