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Native Software Execution In MPSoC Simulation

A Technology that can be used for Rapid Architecture Exploration and
Design of MPSoC Systems

Key Ideas of this Talk

@ Simulation of hardware/software systems

@ Focusing on the fast simulation of software
o Within the model of a hardware environment (SystemC/TLM)

@ Support for performance estimation/annotations

v

Clarification

Host: machine on which the simulator is executed (e.g. x86)

Host code: code directly executable on the host
Native code: code executable on the host once linked with a simulator
Target: machine which is simulated (e.g. ARM, MIPS)
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Introduction ~ Motivations/Issues

Motivations/Issues

Why native simulation?

@ Software is Compiled for Host = Fastest Functional Simulations
@ Software is Executed Natively = No need for ISS Development

@ Software Executes in Zero Time w.r.t H/W = Functional Verification

High Level Application

API (OS/Thread., Libc, com)
@ H/W models use target addresses

whereas S/W uses host addresses Operating
System

o Chip Memory Mapping
o SystemC Memory Mapping

Requirement: MPSoC platform for realistic CPUO l CPU1 |l 1Tc
él éD §| gD

Intra-Communication HW
@ Maximize the source code reusability

CPU2
@ Keep low level hardware details MEM T 13D 2

native simulation
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Introduction  Memorv Representations

Memory Representations

Transaction Accurate Simulation

Real System or CABA Platforms

@ SW dynamically loaded and executed
on the Host

@ HW address decoder uses physical
chip memory mapping

@ SW uses SystemC process memory

@ SW binary loaded in memory

@ HW address decoder uses physical
chip memory mapping

@ SW uses real chip memory

mapping SRR
‘ ISS MEMORY
I$ D$
< 8Interconnect8 >
ADC DMA
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Introduction  Memorv Representations

Real System or CABA Platforms

@ SW binary loaded in memory
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chip memory mapping
@ SW uses real chip memory

mapping
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Introduction  Memorv Representations

Real System or CABA Platforms
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Introduction ~ Chip Memorv Mappings vs. SvstemC Memorv Mapping

Problem

Two uncorrelated memory mappings have to be considered

Chip Memory Mapping (1)

@ Defined by the HW designers (1) (2)
Chip d— SystemC
@ Used by the address decoder at Memory | pynamically [ Software dynamic Memory
. 3 . mapping loaded | library (.so file) mapping
simulation time
~ HAL API
B = ransactlon Accurate sw
SystemC Memory Mapping (2) 2 HAL implementation
. MEMORY
@ Shared by the SW stack | base: 0x0000000
@ Host machine dependent HEoRY
Interconnect

@ Contains standard sections
) Program in .text base: ouooooooo base: onoooxooo
. . . size: 1Kb size: 1Kb

o Initialized data in .data
o Uninitialized data in .bss
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Introduction ~ Chip Memorv Mappings vs. SvstemC Memorv Mapping

Mixing both memory mappings 7

DMA Transfer Example

@ Read data in the ADC

@ Write data into memory (1) (2)
o Chip A ] SystemC
Memory Dynamically Software dyngmic Memory
Source in Chlp Mapplng (1) mapping loaded 4.-5 library (.so file) mapping
X Lo < HAL API SW.s0.
@ Source address is valid in address z bss
¢ Transaction Accurate .data
decoder DMA i HAL implementation
ADC text
@ So DMA can access source ) MEMORY
xec. Unl b 0x00000000
ddress size: 4
a J = 1

MEMORY

Destination in SystemC Mapping (2) =

@ Destination address is valid in SW

@ But /nvalid in the address decoder

@ So DMA cannot access the
destination address

Interconnect _ |
O o

base: 0xA0001000
size: 1Kb

A
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Introduction

Mixing both memory mappings 7

Chip Memorv Mappings vs. SvstemC Memorv Mapping

DMA Transfer Example

@ Read data in the ADC
@ Write data into memory

A

Source in Chip Mapping (1)

@ Source address is valid in address
decoder

@ So DMA can access source
address

V.

Destination in SystemC Mapping (2)

@ Destination address is valid in SW
@ But /nvalid in the address decoder

@ So DMA cannot access the
destination address

(1)

Chip
Memory
mapping

i Software dynamic
Dynamicall 3
yIoaded y§ library (.so file)
HAL API

(2)

SystemC
Memory
mapping

MEMORY

SW.s0.
bss

¢ Transaction Accurate
¢ HAL implementation

MEMORY
ase: 0x00000000
ize: 4Mb

(]

.data

text

base: 0xA0001000
size: 1Kb

A
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Mixing both memory mappings 7

Chip Memorv Mappings vs. SvstemC Memorv Mapping
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Chip
Memory
mapping
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Dynamically
loaded ]
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SystemC
Memory
mapping

HAL API

V.

Destination in SystemC Mapping (2)
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" data”’
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Introduction ~ Chip Memorv Mappings vs. SvstemC Memorv Mapping

Mixing both memory mappings 7

DMA Transfer Example

@ Read data in the ADC

@ Write data into memory (1) (2)
- Chip SystemC
Memory Dynamically Software dynamic Memory
. . . i lib .so fil i
Source in Chip Mapping (1) [orene loaded f  forany (sofile mapping

HAL API \\ SW.so
ey

text

@ Source address is valid in address
decoder

@ So DMA can access source
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V.

MEMORY

Destination in SystemC Mapping (2) =

@ Destination address is valid in SW rext R perrT mﬁmoo

@ But /nvalid in the address decoder __

@ So DMA cannot access the
destination address

A
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Proposed Solution — Native Simulation using HAV  Hardware Assisted Virualization Using KVM

HW Support for CPU Virtualization

Saved by virtualization's needs in the software industry!

New Guest Operating Mode

@ Hardware Support for Root and Non-Root operations

o Root Operations for VMM and Non-Root for Guest System
@ Hardware Based Guest <-> Host Mode Switching
@ Guest Mode Exit Reason Reporting

e PMIO, MMIOQ, Signal Pending, Shutdown ?

Available in most popular CPUs since the mid 2000's:
x86 (Intel, AMD), Power, Cortex A15 (ARM), Sparc, ...

New Transitions

VM Control Structure (VMCS)

e VM Entry and VM Exit @ Controlled by software

@ Swapping of Registers and
Address Space in one Atomic

Operation e Controls when VM Exits occur

@ Keeps track of Guest OS State
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Proposed Solution — Native Simulation using HAV

Address Translation using Memorv Virtualization

HW Support for Memory Virtualization

HAV based Memory Virtualization

@ Software is Compiled as a
Static binary and executes in
Target Address-Space

@ SystemC models simulate
target addresses and remain
un-modified

@ Translation layer provides
bidirectional accesses between
SW and HW components.

v

Hard-coded addresses in SW

Even hard-coded addresses can be

used in Software i.e.
((uint8_t *) 0x0A000010) = 0x33;

v

(1)
Chip
Memory
mapping

DMA
ADC

MEMORY

Memory Virtualization != Virtual Memory
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Proposed Solution — Native Simulation using HAV ~ Address Translation using Memorv Virtualization

HW Support for Memory Virtualization

HAV based Memory Virtualization

@ Software is Compiled as a

Static binary and executes in (1) (3) @
Target Add reSS'Space Chip Address SystemC
. Memory Trans. Memory
@ SystemC models simulate mapping Layer mapping
target addresses and remain
un-modified MEMORY
DMA sw
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.data
bidirectional accesses between —
SW and HW components. MEMORY
o SW

. data
Hard-coded addresses in SW — A

Even hard-coded addresses can be

used in Software i.e.
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v

Memory Virtualization != Virtual Memory
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Proposed Solution — Native Simulation using HAV ~ Using HAV in Event Driven Simulation

Using HAV in Event Driven Simulation

Software Stack
Transparent Memory Accesses i

_Ih':_

. IS
o e (=]
25 5|25
@ Using the Virtual MMU 23 o S — §lax
R Aoy %3 Embedded |Com | — T |2 |= =
implementation in KVM EE e b M:::’C -z g
. - o
o Full address space available in 5 et AL AP >z
Host Dependent HAL ° =
Guest mode =
- - VM E VM Exi R
@ Transparent access i.e. No 59 nter [y VM Ext (+Reason)
d itch 52 [ KVM Kernel Driver
mode switch on memory * 10CTLs H Callbacks
accesses
> [ KVM User Space lerary J H 5
n
t i u g
1 Interrupt MMIO Serm o m
|/O EmU|at|0n E {Control\er}{Accesses] Hostmg E ';-
= o
e I/O (MMIO & PMIO) accesses ¥
force VM Exits §§[ Y } ‘ CcPU MEM .-]»
. . nQ
o We exploit PMIO exits for 38 1 = ‘gg
providing Semi-hosting support. Hy %GENER@;';TWOR%K\AF% .gg
. >
e.g. Annotations )
y l ADC } l DMA } [BLOCK]
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Experiments and Results = Computation and |/O Speed Comparisons

Computation Speed Comparisons
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Experiments and Results

Computation and 1/0O Speed Comparisons

|/O Speed Comparisons & Slowdown w.r.t Direct Host
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Experiments and Results = Performance Estimation Results

Simulation Performance with S/W Annotations
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Experiments and Results

Performance Estimation Results

Accuracy of S/W Annotations in Native Simulation
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Conclusions and Future Works
Conclusions and Future Works

Conclusions

@ HAV provides a novel way of implementing native simulation

@ Memory virtualization solves the conflicting address-spaces issue

@ Support for complex MPSoC architectures and legacy software is
possible as shared memories can be modeled tranparently

@ Simulation performance very close to previous native solutions

@ |/O performance is a bottle-neck, as all I/O requests must trap

e S/W debugging support is currently not available in KVM

Future Directions

@ Finding a solution to minimize the Guest-to-Host transitions

@ Devising a translation scheme for complex architecture simulation
e.g. VLIW Machines

@ Improving the annotation technique to increase estimation accuracy
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Thanks for Your Attention

Questions ?
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