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Simulation Context

Motivations

» Design space exploration and Early Software Development
> Goal: (co-)optimize chips and applications for performances

Difficulties

» Higher number of processor reduces simulation performances

» Sequential simulation speed is still a great concern

Current state of the art solution

Cross-compiled Transaction accurrate
. ) . full software stack CPU system model
Dynamic Binary Translation
based ISS.
» Pros: fast and relatively /
1 0s
precise ‘ ‘H ‘ g D

» Cons: complex
development
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Solutions for fast development of simulators

Automatic generation, a need

» To avoid complex development,

> To allow quick availability of simulation platforms.

Automatic fast simulators generation

» Solutions has been proposed before[UC00, CVE00, NBS*02],
> Proprietary, not available, no details, no "full software execution” support, ...

Our goal

» Automate the production of dynamic binary translators
» Benefit from automation to produce faster simulators
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e Principle of Dynamic Binary Translation
o Design flow
o Intermediate Representation Generation
e Conclusion
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DBT Principle

Process
'Bi r{a_ry_'l:ra>n:qlét-io-n _____________________ '
' No '
Fetch Decode <Branch?> | Execute

micro-ops
buffer

Instruction

Target binary
code (.elf)
Micro-operations
built-in

Code generation example

18 instrX_target micro-opl_instrX

micro-op2_instrX
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Automatic simulator generation

The generator

» Takes a description of the target (simulated) architecture,
and a description of the host (machine simulation is run on) architecture,

> Generated ISS relies on Dynamic Binary Translation approach,

» DBT process uses an intermediate representation.
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General design flow

Simulator decoder translator codegen
generation gen gen gen

Simulation
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General design flow
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General design flow
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Why keep an IR at runtime?

Direct target to host translation possible

» But previous works shown interests in having one [UC00, CVEOQO, Bel05],

e Allows for runtime optimizations,
o Easier debugging.
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Intermediate Representation Generation

: D D
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Why generating the IR?

Generating an IR specialized to the target/host pair

» Previous works show dramatic performance gains
> Speeding-up SIMD instructions dynamic binary translation[MFP11]
» Better SIMD translation, adapted IR (ARM Neon — x86 MMX/SSE) in QEMU.

Direct mapping case

. IR micro-:)peration Host Icode
vadd.il6 —— > |simd_128 add_i16| ———> paddw
translation - - - generation

ARM Neon instruction IR micro-operation x86 MMX/SSE instruction
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Why generating the IR?

Generating an IR specialized to the target/host pair

» Previous works show dramatic performance gains
> Speeding-up SIMD instructions dynamic binary translation[MFP11]
» Better SIMD translation, adapted IR (ARM Neon — x86 MMX/SSE) in QEMU.

Multiple micro-operations
Host code
5|md 128_shr_i32 perd
generat|on
Host code
IR micro-operation snmd 128 _add_i32 paddd
translatlon generatlon

ARM Neon instruction IR micro-operations x86 MMX/SSE instructions
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Why generating the IR?

Generating an IR specialized to the target/host pair

» Previous works show dramatic performance gains
> Speeding-up SIMD instructions dynamic binary translation[MFP11]
» Better SIMD translation, adapted IR (ARM Neon — x86 MMX/SSE) in QEMU.

Multiple host instructions

psllw

movd

IR micro-operation X i
vshl.u8 — simd_128_shl_i8
translation

pinsrw

Host code
generation
ARM Neon instruction IR micro-operation x86 MMX/SSE instructions
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How to auto-generate a specialized IR?

Start from a canonical IR

> Used to describe the instructions in the target and host description,
» Each (part of) target instruction is matched against host instruction.

Target description |: Canonical IR Host description

‘ \‘ . e -

Generated micro
operations

h_dst

Tl eop op; .+
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How to auto-generate a specialized IR?

Start from a canonical IR

> Used to describe the instructions in the target and host description,
» Each (part of) target instruction is matched against host instruction.

Target description |: Canonical IR Host description

t_op, t_op, \‘ \‘ h_op, h_op,

Generated micro : . ds‘t’
operations -
top; t op,
., Gopy @op, .-
t_dst
@dst
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How to auto-generate a specialized IR?

Start from a canonical IR

> Used to describe the instructions in the target and host description,
» Each (part of) target instruction is matched against host instruction.

Target description Host description

Generated micro

operations .||’
top, |[..Com Qp, .

@op,
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Matching constraints

Operations

» Host implements the canonical IR atoms

o Back-end simple and efficient
o Not an issue since IR automatically generated for (target, host) couple

Operands

» Operand size, type and location induce loose matching
» Specific code generation to handle conversions

Control

» Flags, ...
» Related to run-time on BB boundaries
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Still at an early stage!

First working prototype

» MIPS to simple virtual machine
» Translator generation fitting into QEMU

Many open questions, among which

> Is this more efficient than using a fixed IR?
» Will the generated IR runtime allow optimization?
» How to Efficient handle non-functional properties?

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France



Introduction DBT principle design flc nterme R ation Gener Conclusion

Conclusion

Convenient design flow for DBT based simulator generation

v

Fast development,
DBT based,
Specialized intermediate representation.

v

v

v

Some parts have been addressed by previous works,

v

but still a work in progress.
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Conclusion

Thank you!
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