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Simulation Context

Motivations

I Design space exploration and Early Software Development

I Goal: (co-)optimize chips and applications for performances

Difficulties

I Higher number of processor reduces simulation performances

I Sequential simulation speed is still a great concern

Current state of the art solution

Dynamic Binary Translation
based ISS.

I Pros: fast and relatively
precise

I Cons: complex
development

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 2 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Solutions for fast development of simulators

Automatic generation, a need

I To avoid complex development,

I To allow quick availability of simulation platforms.

Automatic fast simulators generation

I Solutions has been proposed before[UC00, CVE00, NBS+02],

I Proprietary, not available, no details, no ”full software execution”support, . . .

Our goal

I Automate the production of dynamic binary translators

I Benefit from automation to produce faster simulators
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Agenda

Principle of Dynamic Binary Translation

Design flow

Intermediate Representation Generation

Conclusion
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DBT Principle

Process

Code generation example
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Automatic simulator generation

The generator

I Takes a description of the target (simulated) architecture,
and a description of the host (machine simulation is run on) architecture,

I Generated ISS relies on Dynamic Binary Translation approach,

I DBT process uses an intermediate representation.
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General design flow
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Why keep an IR at runtime?

Direct target to host translation possible

I But previous works shown interests in having one [UC00, CVE00, Bel05],

Allows for runtime optimizations,
Easier debugging.
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Intermediate Representation Generation
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Why generating the IR?

Generating an IR specialized to the target/host pair

I Previous works show dramatic performance gains

I Speeding-up SIMD instructions dynamic binary translation[MFP11]

I Better SIMD translation, adapted IR (ARM Neon → x86 MMX/SSE) in QEMU.

Direct mapping case
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How to auto-generate a specialized IR?

Start from a canonical IR

I Used to describe the instructions in the target and host description,

I Each (part of) target instruction is matched against host instruction.
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Matching constraints

Operations

I Host implements the canonical IR atoms

Back-end simple and efficient
Not an issue since IR automatically generated for (target, host) couple

Operands

I Operand size, type and location induce loose matching

I Specific code generation to handle conversions

Control

I Flags, ...

I Related to run-time on BB boundaries
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Still at an early stage!

First working prototype

I MIPS to simple virtual machine

I Translator generation fitting into QEMU

Many open questions, among which

I Is this more efficient than using a fixed IR?

I Will the generated IR runtime allow optimization?

I How to Efficient handle non-functional properties?
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Conclusion

Convenient design flow for DBT based simulator generation

I Fast development,

I DBT based,

I Specialized intermediate representation.

I Some parts have been addressed by previous works,

I but still a work in progress.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 14 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Thank you!
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