Automatic Generation of Efficient Dynamic
Binary Translators

Frédéric Pétrot, Luc Michel and Nicolas Fournel

Tima Laboratory,
Grenoble, France

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle ow Intermediate R

Conclusion

Simulation Context

Motivations

» Design space exploration and Early Software Development
> Goal: (co-)optimize chips and applications for performances

Difficulties

» Higher number of processor reduces simulation performances

» Sequential simulation speed is still a great concern

Current state of the art solution

Cross-compiled Transaction accurrate
.) . full software stack CPU system model
Dynamic Binary Translation
based ISS.
» Pros: fast and relatively /
1 0s
precise ‘ ‘H ‘ g D

» Cons: complex
development

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle v Intermediate Representation Generation

Solutions for fast development of simulators

Automatic generation, a need

» To avoid complex development,

> To allow quick availability of simulation platforms.

Automatic fast simulators generation

» Solutions has been proposed before[UC00, CVE00, NBS*02],
> Proprietary, not available, no details, no "full software execution” support, ...

Our goal

» Automate the production of dynamic binary translators
» Benefit from automation to produce faster simulators

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle desig ntermediate Representation Gener

e Principle of Dynamic Binary Translation
o Design flow
o Intermediate Representation Generation
e Conclusion

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle

Process

Binary Translation

Fetch

€ Decode Execute

-
'
'
'
'
'

micro-ops
buffer

Instruction iTB Cache Entry|

Translation Cache
(host binary code)

Target binary
code (.elf)
Micro-operations
built-in

Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle design flc Intermediate Ref

Process

Binary Translation

-
'
'

Decode Execute

micro-ops
buffer

iTB Cache Entry|

Instruction |

Translation Cache
(host binary code)

Target binary
code (.elf)

Micro-operations
built-in

Code generation example
18 instrX_target

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle design flc Intermediate Ref

Process

P m e -
'
'

Binary Translation

Fetch

Decode Execute

micro-ops &
buffer

Instruction iTB Cache Entry|

ICode Generation, Translation Cache

Target binary (host binary code)
code (.elf)
Micro-operations
built-in
Code generation example
18 instrX_target micro-opl_instrX

micro-op2_instrX

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction

DBT principle

Interme

diate Representation Generation Conclusion

DBT Principle

Process
'Bi r{a_ry_'l:ra>n:qlét-io-n _____________________ '
' No '
Fetch Decode <Branch?> | Execute

micro-ops
buffer

Instruction

Target binary
code (.elf)
Micro-operations
built-in

Code generation example

18 instrX_target micro-opl_instrX

micro-op2_instrX

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators

iTB Cache Entry|

Translation Cache
(host binary code)

host_instrl_micro-op1l_instrX
host_instr2_micro-op1_instrX
host_instr3_micro-opl_instrX
host_instrl_micro-op2_instrX

MPSoC'14, Margaux, France

Introduction DBT principle Design flow

Automatic simulator generation

The generator

» Takes a description of the target (simulated) architecture,
and a description of the host (machine simulation is run on) architecture,

> Generated ISS relies on Dynamic Binary Translation approach,

» DBT process uses an intermediate representation.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

General design flow

Simulation

Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translat '14, France

Introduction DBT principle Design flow Intermediate R

General design flow

Simulator decoder translator codegen
generation gen gen gen

Simulation

Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle Design flow Intermediate Ref tion Generation Conclusion

General design flow

. D D
Architecture
description target host

D
spec
IR
ription
A \ \
Simulator decoder translator codegen
generation gen gen gen

Simulation

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introductiol DBT principle

Design flow

Intermediate R tion Generation

General design flow

. D D
Architecture
description target host
escriptior Tiption
/
/
N
D
IR spec IR spec
generation gen > R
ription
]
A \ \
Simulator decoder translator codegen
generation gen gen gen
Simulation

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators

MPSoC'14, Margaux, France

DBT principle Design flow Intermediate Representation Gener

Why keep an IR at runtime?

Direct target to host translation possible

» But previous works shown interests in having one [UC00, CVEOQO, Bel05],

e Allows for runtime optimizations,
o Easier debugging.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introductic DBT principle flow Intermediate Representation Generation Conclusion

Intermediate Representation Generation

: D D

Architecture
description target host

/

/

N\
D

IR spec IR spec
generation gen > IR

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle design flow Intermediate Representation Generation

Why generating the IR?

Generating an IR specialized to the target/host pair

» Previous works show dramatic performance gains
> Speeding-up SIMD instructions dynamic binary translation[MFP11]
» Better SIMD translation, adapted IR (ARM Neon — x86 MMX/SSE) in QEMU.

Direct mapping case

. IR micro-:)peration Host Icode
vadd.il6 —— > |simd_128 add_i16| ———> paddw
translation - - - generation

ARM Neon instruction IR micro-operation x86 MMX/SSE instruction

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle design flow Intermediate Representation Generation

Why generating the IR?

Generating an IR specialized to the target/host pair

» Previous works show dramatic performance gains
> Speeding-up SIMD instructions dynamic binary translation[MFP11]
» Better SIMD translation, adapted IR (ARM Neon — x86 MMX/SSE) in QEMU.

Multiple micro-operations
Host code
5|md 128_shr_i32 perd
generat|on
Host code
IR micro-operation snmd 128 _add_i32 paddd
translatlon generatlon

ARM Neon instruction IR micro-operations x86 MMX/SSE instructions

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle design flow Intermediate Representation Generation

Why generating the IR?

Generating an IR specialized to the target/host pair

» Previous works show dramatic performance gains
> Speeding-up SIMD instructions dynamic binary translation[MFP11]
» Better SIMD translation, adapted IR (ARM Neon — x86 MMX/SSE) in QEMU.

Multiple host instructions

psllw

movd

IR micro-operation X i
vshl.u8 — simd_128_shl_i8
translation

pinsrw

Host code
generation
ARM Neon instruction IR micro-operation x86 MMX/SSE instructions

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle Intermediate Representation Generation

How to auto-generate a specialized IR?

Start from a canonical IR

> Used to describe the instructions in the target and host description,
» Each (part of) target instruction is matched against host instruction.

Target description |: Canonical IR Host description

‘ \‘ . e -

Generated micro
operations

h_dst

Tl eop op; .+

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle Intermediate Representation Generation

How to auto-generate a specialized IR?

Start from a canonical IR

> Used to describe the instructions in the target and host description,
» Each (part of) target instruction is matched against host instruction.

Target description |: Canonical IR Host description

t_op, t_op, \‘ \‘ h_op, h_op,

Generated micro : . ds‘t’
operations -
top; t op,
., Gopy @op, .-
t_dst
@dst

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

DBT principle esign flc Intermediate Representation Generation

How to auto-generate a specialized IR?

Start from a canonical IR

> Used to describe the instructions in the target and host description,
» Each (part of) target instruction is matched against host instruction.

Target description Host description

Generated micro

operations .||’
top, |[..Com Qp, .

@op,

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle v Intermediate Representation Generation Conclusion

Matching constraints

Operations

» Host implements the canonical IR atoms

o Back-end simple and efficient
o Not an issue since IR automatically generated for (target, host) couple

Operands

» Operand size, type and location induce loose matching
» Specific code generation to handle conversions

Control

» Flags, ...
» Related to run-time on BB boundaries

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle Intermediate Representation Generation

Still at an early stage!

First working prototype

» MIPS to simple virtual machine
» Translator generation fitting into QEMU

Many open questions, among which

> Is this more efficient than using a fixed IR?
» Will the generated IR runtime allow optimization?
» How to Efficient handle non-functional properties?

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Introduction DBT principle design flc nterme R ation Gener Conclusion

Conclusion

Convenient design flow for DBT based simulator generation

v

Fast development,
DBT based,
Specialized intermediate representation.

v

v

v

Some parts have been addressed by previous works,

v

but still a work in progress.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

Conclusion

Thank you!

ﬁ F. Bellard, QEMU, a fast and portable dynamic translator, the USENIX
Annual Technical Conference, 2005, pp. 41-46.

@ C. Cifuentes and M. Van Emmerik, UQBT: Adaptable Binary Translation at
Low Cost, Computer 33 (2000), no. 3, 60-66.

@ L. Michel, N. Fournel, and F. Pétrot, Speeding-up SIMD instructions dynamic
binary translation in embedded processor simulation, Proceedings of the
Design, Automation & Test in Europe Conference, IEEE, 2011, pp. 277-280.

ﬁ A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and A. Hoffmann,
A universal technique for fast and flexible instruction-set architecture
simulation, 39th Design Automation Conference, 2002, pp. 22-27.

@ D. Ung and C. Cifuentes, Machine-adaptable dynamic binary translation,
DYNAMO '00, 2000, pp. 41-51.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC'14, Margaux, France

	Introduction
	Principle of Dynamic Binary Translation
	Design flow
	Intermediate Representation Generation
	Conclusion

