
Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Automatic Generation of Efficient Dynamic
Binary Translators

Frédéric Pétrot, Luc Michel and Nicolas Fournel

Tima Laboratory,
Grenoble, France

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 1 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Simulation Context

Motivations

I Design space exploration and Early Software Development

I Goal: (co-)optimize chips and applications for performances

Difficulties

I Higher number of processor reduces simulation performances

I Sequential simulation speed is still a great concern

Current state of the art solution

Dynamic Binary Translation
based ISS.

I Pros: fast and relatively
precise

I Cons: complex
development

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 2 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Solutions for fast development of simulators

Automatic generation, a need

I To avoid complex development,

I To allow quick availability of simulation platforms.

Automatic fast simulators generation

I Solutions has been proposed before[UC00, CVE00, NBS+02],

I Proprietary, not available, no details, no ”full software execution”support, . . .

Our goal

I Automate the production of dynamic binary translators

I Benefit from automation to produce faster simulators

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 3 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Agenda

Principle of Dynamic Binary Translation

Design flow

Intermediate Representation Generation

Conclusion

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 4 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

DBT Principle

Process

Code generation example

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 5 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

DBT Principle

Process

Code generation example

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 5 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

DBT Principle

Process

Code generation example

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 5 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

DBT Principle

Process

Code generation example

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 5 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Automatic simulator generation

The generator

I Takes a description of the target (simulated) architecture,
and a description of the host (machine simulation is run on) architecture,

I Generated ISS relies on Dynamic Binary Translation approach,

I DBT process uses an intermediate representation.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 6 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

General design flow

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 7 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

General design flow

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 7 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

General design flow

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 7 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

General design flow

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 7 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Why keep an IR at runtime?

Direct target to host translation possible

I But previous works shown interests in having one [UC00, CVE00, Bel05],

Allows for runtime optimizations,
Easier debugging.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 8 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Intermediate Representation Generation

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 9 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Why generating the IR?

Generating an IR specialized to the target/host pair

I Previous works show dramatic performance gains

I Speeding-up SIMD instructions dynamic binary translation[MFP11]

I Better SIMD translation, adapted IR (ARM Neon → x86 MMX/SSE) in QEMU.

Direct mapping case

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 10 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Why generating the IR?

Generating an IR specialized to the target/host pair

I Previous works show dramatic performance gains

I Speeding-up SIMD instructions dynamic binary translation[MFP11]

I Better SIMD translation, adapted IR (ARM Neon → x86 MMX/SSE) in QEMU.

Multiple micro-operations

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 10 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Why generating the IR?

Generating an IR specialized to the target/host pair

I Previous works show dramatic performance gains

I Speeding-up SIMD instructions dynamic binary translation[MFP11]

I Better SIMD translation, adapted IR (ARM Neon → x86 MMX/SSE) in QEMU.

Multiple host instructions

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 10 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

How to auto-generate a specialized IR?

Start from a canonical IR

I Used to describe the instructions in the target and host description,

I Each (part of) target instruction is matched against host instruction.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 11 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

How to auto-generate a specialized IR?

Start from a canonical IR

I Used to describe the instructions in the target and host description,

I Each (part of) target instruction is matched against host instruction.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 11 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

How to auto-generate a specialized IR?

Start from a canonical IR

I Used to describe the instructions in the target and host description,

I Each (part of) target instruction is matched against host instruction.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 11 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Matching constraints

Operations

I Host implements the canonical IR atoms

Back-end simple and efficient
Not an issue since IR automatically generated for (target, host) couple

Operands

I Operand size, type and location induce loose matching

I Specific code generation to handle conversions

Control

I Flags, ...

I Related to run-time on BB boundaries

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 12 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Still at an early stage!

First working prototype

I MIPS to simple virtual machine

I Translator generation fitting into QEMU

Many open questions, among which

I Is this more efficient than using a fixed IR?

I Will the generated IR runtime allow optimization?

I How to Efficient handle non-functional properties?

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 13 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Conclusion

Convenient design flow for DBT based simulator generation

I Fast development,

I DBT based,

I Specialized intermediate representation.

I Some parts have been addressed by previous works,

I but still a work in progress.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 14 / 15



Introduction DBT principle Design flow Intermediate Representation Generation Conclusion

Thank you!

F. Bellard, QEMU, a fast and portable dynamic translator, the USENIX
Annual Technical Conference, 2005, pp. 41–46.

C. Cifuentes and M. Van Emmerik, UQBT: Adaptable Binary Translation at
Low Cost, Computer 33 (2000), no. 3, 60–66.

L. Michel, N. Fournel, and F. Pétrot, Speeding-up SIMD instructions dynamic
binary translation in embedded processor simulation, Proceedings of the
Design, Automation & Test in Europe Conference, IEEE, 2011, pp. 277–280.

A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and A. Hoffmann,
A universal technique for fast and flexible instruction-set architecture
simulation, 39th Design Automation Conference, 2002, pp. 22–27.

D. Ung and C. Cifuentes, Machine-adaptable dynamic binary translation,
DYNAMO ’00, 2000, pp. 41–51.

F. Pétrot et al. - Automatic Generation of Efficient Dynamic Binary Translators MPSoC’14, Margaux, France 15 / 15


	Introduction
	Principle of Dynamic Binary Translation
	Design flow
	Intermediate Representation Generation
	Conclusion

