/N\~"\
MPSoC'14

Lightweight task migration in
multi-tiled architectures -

Communication consistency

Frédéric Rousseau

TIMA lab - University of Grenoble Alpes

A joint work with Ashraf El-Antably & Nica

UNIVERSITE
JOSEPH FOURIER
‘SCIENCES TECHNOLOGIE MEDECINE

Definition, motivation, and challenges

Communication inconsistency and task migration
methodology

Implementation, simulation and results
Conclusion and future work

Definitions

* A multi-tiled architecture is a highly | !
platform, designed with several tiles connected with a NoC

* A tile contains at least one processing unit and peripherals (I/O,
NoC routers, private memory, ...)

=>NO SHARED MEMORY BETWEEN TILES

Za Tile
4

CPU

Interconnect

NN < < X X
|+l+|+

\J
<

@) (b)

* In multi-tiled architecture, task migration is the transfer of task
(process) context from source tile to destination tile

3

Motivations

Task migration is a suitable solutic
several challenges of MPSoC:

1. Reliability: load balancing reduces peak temperature,
avoids excessive use of certain cores

2. System adaptivity: with more complex applications, not

all scenarios can be determined statically, task migration
eases dynamic remapping

3. Power consumption: moving away tasks to enter power
down mode

Challenges

* Task migration is a well-known proce
Processors (SMP) architectures

* Thanks to a shared memory

* More challenges in multi-tiled architecture
* Transfer of the task context: Where to stop the code?
* Stack, heap, registers
* What about the task code: replication vs recreation ?
* Transfer to or duplication in the source tile ?

* How to ensure communication consistency ?
* Resuming communication after migration ?
* How to manage unprocessed tokens?

5

Communication inconsistency

* Hypothesis T ——

* Inter-task communication is undergone througH FIFO buffers
* Reading and writing are blocking

Tm
Migratble
task

* Reasons that may cause inconsistency

* Change of the location where a task is running
=>» Modification of the channel after migration
* to keep sending and receiving data

=» Forwarding unprocessed data left in FIFO
* Re-sent of data to the right corresponding FIFO

Communication inconsistency

solution

* Configurable channels\
i

* Each channel is configurable

* Second branch connected to the replica
* Only one branch is active at a time

Ti
generator

* Same port number (what is seen by the
application designer)

* No change in the task code

Communication inconsistency

solution

—\
* How to manage unconsumed data?
* Qur solution: A copy buffer-based protocol

* Copy buffer to sender and receiver

* When a data has been consumed by the consumer, an ACK is sent
back to the sender, and the data is removed from the sender
buffer

Migration decision

Semi-distributed topology is used

* A system has a number of clusters :

* A cluster has a number of tiles 8
Tile 0

* Detection of troubles: DNP & monitor Q

» DNP for link integrity, temperature status
» One monitor process per tile checking DNP Smig_ctrli i

* Decision: Broker process
» Responsible for migration decision
» 1broker per cluster

‘ monitor’

* Implementation: mig_ctrl process Tile 1

» Responsible for implementing migration
process

» One mig_ctrl per tile

Implementation

* The overall algorithm'is quite co
* Several processes are needed to manage migratic
* Several tables to keep a view of

* Location of each task
* List of adjacent tasks

* Creation of new channels to manage migration control
* Definition of a specific layer

* APIs for creating, starting, pausing, resuming and migrating
processes along with all APIs responsible for communication

MProc

Hardware

10

Reaching migration point

Reached only if the iteration is able
completed

* 10 and computations are finished

* All neighbours are paused in reverse token
dependency

* Avoid deadlocks

* One reason not to reach the migration
point: a channel is full

* The migration management detects

such a blockage and increases the FIFO
size.

1"

i

[* Allocate state variables */
p->init(p);
[* until it is canceled or migrated */
while ({\CANCELED()) {
[* Normal execution */
if (p->cmd == RUN)
p->fire(p);
else /* migration point */
if (p->cmd == MIG_REQUEST){
Init_migration();

}

Simulation and results

* A multi-tiled simulation platfor m
ARM based QEMU emulator) — Talk of Prof. Frédéric Pétrot

on Friday

* In terms of memory footprint

* Anincrease of less than 4% of the memory footprint
* Mainly from the .text section (MigCtrl tasks and replica)

* In terms of performances

* Overall execution time static/dynamic migration request
* 14,8% of overhead

12

Conclusion and perspectives

* Conclusion
* Lightweight task migration methodology T
* No modification in the OS (no MMU, no dynamic loading) or drivers
* Light overhead
* Communication inconsistency solved

* Perspectives
* Automatic generation

* Port on a real hardware multi-tile platform
* With our partner INFN (Roma): QUONG architecture

* This work has been funded by the EC (FP7 EURETILE)

