
NanoProcessor Cluster:
Conversion from ILP to µTLP

July 10th, 2014

Fumio Arakawa
Nagoya Univ.

14th International Forum on Embedded MPSoC and Multicore
MPSoC 2014

Outline

I. INTRODUCTION

II. NANOPROCESSOR CLUSTER

III. EVALUATION AND CONCLUSION

Outline

I. INTRODUCTION

II. NANOPROCESSOR CLUSTER

III. EVALUATION AND CONCLUSION

Amdahl’s Law & Pollack’s Law

• Amdahl’s Law: 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 (𝜶𝜶) =
– 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨: total area of the cores
– 𝒑𝒑: parallelization ratio
– 𝑩𝑩𝑩𝑩𝑩𝑩: big core perf. , where little core perf. = 1, little core area = 1

• Pollack’s Law: 𝑩𝑩𝑩𝑩𝑩𝑩 = 𝒃𝒃𝒃𝒃𝒃𝒃 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂
– We are on the wrong side of a square law.
– Too much ILP extraction causes inefficiencies of the Big cores.

• Heterogeneous multi-many-core processor
– high performance for a fairly parallel program
– an inefficient, but high performance, single core
– highly efficient, but low performance, multi-many cores

• 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 − 𝑩𝑩𝑩𝑩𝑩𝑩𝟐𝟐 + 𝟏𝟏: number of cores in the "𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀" with one "𝐛𝐛𝐛𝐛𝐛𝐛" core

𝟏𝟏
𝟏𝟏 − 𝒑𝒑
𝑩𝑩𝑩𝑩𝑩𝑩 + 𝒑𝒑

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 − 𝑩𝑩𝑩𝑩𝑩𝑩𝟐𝟐 + 𝟏𝟏

1

20

40

60

80
100

0
10
20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (𝒑𝒑 = 𝟎𝟎.𝟗𝟗𝟗𝟗)

𝟓𝟓𝟓𝟓.𝟑𝟑

1𝟎𝟎

• Pollack’s Law: 𝑩𝑩𝑩𝑩𝑩𝑩 = 𝒃𝒃𝒃𝒃𝒃𝒃 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂
• Amdahl’s Law: 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =

𝒑𝒑 = 𝟎𝟎.𝟗𝟗𝟗𝟗

𝟏𝟏
𝟏𝟏 − 𝒑𝒑
𝑩𝑩𝑩𝑩𝑩𝑩 + 𝒑𝒑

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 − 𝑩𝑩𝑩𝑩𝑩𝑩𝟐𝟐 + 𝟏𝟏𝟕𝟕𝟕𝟕.𝟎𝟎

1

20

40

60

80
100

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (𝒑𝒑 = 𝟎𝟎.𝟗𝟗)
• Pollack’s Law: 𝑩𝑩𝑩𝑩𝑩𝑩 = 𝒃𝒃𝒃𝒃𝒃𝒃 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂
• Amdahl’s Law: 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =

𝒑𝒑 = 𝟎𝟎.𝟗𝟗

𝟏𝟏
𝟏𝟏 − 𝒑𝒑
𝑩𝑩𝑩𝑩𝑩𝑩 + 𝒑𝒑

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 − 𝑩𝑩𝑩𝑩𝑩𝑩𝟐𝟐 + 𝟏𝟏𝟑𝟑𝟑𝟑.𝟖𝟖

𝟗𝟗.𝟏𝟏𝟏𝟏
1𝟎𝟎

Outline

I. INTRODUCTION

II. NANOPROCESSOR CLUSTER

III. EVALUATION AND CONCLUSION

Outline

I. INTRODUCTION

II. NANOPROCESSOR CLUSTER

III. EVALUATION AND CONCLUSION

Conversion from ILP to µTLP
• Single core utilizes ILP (Instruction Level Parallelism).

– Pipelined Architecture: Parallelism = # of the pipeline stages
– Superscalar Architecture: Parallelism = # of issue slots
– Good for tightly-coupled operations, Bad for long-latency operations

• Conversion from ILP to µTLP (µ-Thread Level Parallelism)
– µ-Thread: a divided flow of original single flow

Flows are tightly coupled.
Each flow requires subset of conventional CPU functions.

• Reorganizing microprocessor core to “NanoProcessor Cluster”
– NanoProcessor: Subset of Conventional CPU Functions

Execute a µ-Thread
Scalar short-pipeline processor: for limited ILP

– Its Cluster: equivalent to microprocessor function
Good for both tightly-coupled and long-latency operations
highly efficient and high performance

Out-of-Order Microprocessor
• Conventional out-of-order issue microprocessor

– Mixed functions, various execution latencies
• order of instructions ≠ ideal order of processor executions

– Limited number of logical registers visible to software
– Reordering with large physical register file
– Long time from assign to write: Most of registers are idle.

Lo
op

 i
Lo

op
 i+

1

Time

Add
Load

Store

Add
Load

Store

Branch

Add
Load

Store

Branch

BranchLo
op

 i+
2

S
in

gl
e

P
ro

gr
am

 F
lo

w

NanoProcessor Cluster
• NanoProcessor:

– Execute its own µ-thread flow
– Limited similar functions are enough for each NanoProcessor.
– the same or similar latencies
– Synchronization with Register Validity (Architectural State)

• Write : register becomes valid
• Last Read (New) : register becomes invalid
• Flow change : Validate or Invalidate if the validity is changed.

Loop i
Loop i+1

Time

P
ro

gr
am

 F
lo

w
s

Add

Load

Store

Add

Load

Store

Add

Load

Store

Loop i+2

Loop i
Loop i+1
Loop i+2

Loop i
Loop i+1
Loop i+2

Lo
op

 i
Lo

op
 i+

1

Time

Add
Load

Store

Add
Load

Store

Branch

Add
Load

Store

Branch

BranchLo
op

 i+
2

S
in

gl
e

P
ro

gr
am

 F
lo

w

LD Nanoprocessor

AdderRegister
file

Data load
controller

EX Nanoprocessor

ALURegister
file Multiplier

ST Nanoprocessor
Register

file Adder Data store
controller

IQ

IQ

IQ

D$

or

RAM

IF N
anoprocessor

Instruction
fetch

controller
Branch

controller
IQ

AdderI$

RAM

or

ROM

Bus interface unit

Internal Bus

Block Diagram

Sample Program
• Simple String Compare (Max. 8 Characters)

IF NanoProcessor LD NanoProcessor EX NanoProcessor

1
2

1
2
3
4
5
6

(caller)
(next_PC = IF1)
IQ/IF 5,LD1

(callee)
IF1: IQL/LD 2,EX1

LP/LD LD1,LD2,8
IQR/EX 6,RA
LP/EX EX2,EX3,8
BQ/EX C0.p,EX2,EX5
BQ/EX C1.n,EX3,EX4

MOVI R0,#ptr0
MOVI R1,#ptr1

LD1: LBU R0/EX,(R0)++
LD2: LBU R1/EX,(R1)++

EX1: MOVI R2 ,#0
EX2: SEQ C0,R2/K,R0/K
EX3: SEQ C1,R1 ,R0
EX4: REGV R1 ,R0
EX5: SUB R1 ,R0

REGI R2

Instruction Examples
Instruction Operation

IQ/IF 5,LD1 Load 5 insts. from next_PC to the IQ of IF NanoProcessor, and
update the next_PC to point LD1.

IQL/LD 2,EX1 Load 2 insts. from next_PC to the IQ of LD NanoProcessor, link
return address to RA, and update the next_PC to point EX1.

IQR/EX 6,RA Load 6 insts. from next_PC to the IQ of EX NanoProcessor, and
copy RA value to the next_PC.

LP/LD LD1,LD2,8 Loop setting from LD1 to LD2 for 8 times.

BQ/EX C0.p,EX2,EX5 Branch setting from EX2 to EX5 of EX NanoProcessor if C0 == 1.

BQ/EX C1.n,EX3,EX4 Branch setting from EX3 to EX4 of EX NanoProcessor if ~C1 == 1.

MOVI R0,#ptr0 Copy an immediate value ptr0 to register R0.

LBU R0/EX,(R0)++ Load 1-byte unsigned value from the memory pointed by register
R0 to register R0 of EX NanoProcessor, and add 1 to R0.

SEQ C0,R2/K,R0/K Set a comparison result of R2 and R0 to C0, and keep the values
of R2 and R0.

REGV R0,R1 Validate registers R0 and R1.
REGI R2 Invalidate register R2.

Sample Program
IF NanoProcessor LD NanoProcessor EX NanoProcessor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

IF1: IQL/LD 2,EX1
LP/LD LD1,LD2,8
IQR/EX 6,RA
LP/EX EX2,EX3,8
BQ/EX C0.p,EX2,EX5
BQ/EX C1.n,EX3,EX4

- Mismatch at the third
character

- IF & LD latencies are
3 cycles.

- Two-cycle stall for
branch prediction miss

- Discard fetched value
after loop exit

LD1: LBU R0/EX,(R0)++
LD2: LBU R1/EX,(R1)++
LD1: LBU R0/EX,(R0)++
LD2: LBU R1/EX,(R1)++
LD1: LBU R0/EX,(R0)++
LD2: LBU R1/EX,(R1)++
LD1: LBU R0/EX,(R0)++
LD2: LBU R1/EX,(R1)++
LD1: LBU R0/EX,(R0)++
LD2: LBU R1/EX,(R1)++

EX1: MOVI R2 ,#0
EX2: SEQ C0,R2/K,R0/K
EX3: SEQ C1,R1 ,R0
EX2: SEQ C0,R2/K,R0/K
EX3: SEQ C1,R1 ,R0
EX2: SEQ C0,R2/K,R0/K
EX3: SEQ C1,R1 ,R0

EX4: REGV R1 ,R0
EX5: SUB R1 ,R0

REGI R2

Outline

I. INTRODUCTION

II. NANOPROCESSOR CLUSTER

III. EVALUATION AND CONCLUSION

Outline

I. INTRODUCTION

II. NANOPROCESSOR CLUSTER

III. EVALUATION AND CONCLUSION

Evaluation with Dhrystone 2.1
• NanoProcessor architecture is effective to hide long latencies.

• SH-X: embedded processor, dual issue eight-stage pipeline

SH-X NanoProcessor Cluster

w/o speculative
load

w/ speculative
load

Load
Latency

cycles
/loop

MIPS
/MHz

cycles
/loop

MIPS
/MHz

cycles
/loop

MIPS
/MHz

3 282 2.02 268 2.12 225 2.53

5 337 1.69 313 1.82 249 2.29

9 509 1.12 413 1.38 302 1.89

#) Dhrystone performance is highly dependent on compiling option, and
only relative performances are important.

NanoProcessor Cluster

Conversion from ILP to µTLP
• Good for both tightly-coupled and long-latency operations
• Highly-efficient and High performance
• Each NanoProcessor is simple and independent as a processor.
• NanoProcessors are linked by simple interface.
• Simple: Easy to design, implement, evaluate, and debug

Future Work
• Search for suitable applications

– Embedded, Networking, HPC, ...
• More Tools, Evaluations, and Collaborations

– Compiler, Simulator, benchmarks, ...

	NanoProcessor Cluster: Conversion from ILP to µTLP
	Outline
	Amdahl’s Law & Pollack’s Law
	𝑯𝒊𝒈𝒉𝒍𝒚 𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝑪𝒂𝒔𝒆 (𝒑=𝟎.𝟗𝟗)
	𝑭𝒂𝒊𝒓𝒍𝒚 𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝑪𝒂𝒔𝒆 (𝒑=𝟎.𝟗)
	Outline
	Conversion from ILP to µTLP
	Out-of-Order Microprocessor
	NanoProcessor Cluster
	Block Diagram
	Sample Program
	Instruction Examples
	Sample Program
	Outline
	Evaluation with Dhrystone 2.1
	NanoProcessor Cluster

