Normally-Off Computing for Smart City Applications

Hiroshi Nakamura

Graduate School of Information Science and Technology Director, Information Technology Center The University of Tokyo

nakamura@hal.ipc.i.u-tokyo.ac.jp nakamura@acm.org

http://www.hal.ipc.i.u-tokyo.ac.jp/~nakamura

- Normally-Off (N-Off): aggressively powers off components of computer systems when they need not to operate, even under computation.
- Computing which realizes the 'Normally-Off'
- Key Technology
 - Non-Volatile Memory (MRAM, FeRAM, etc.)
 - Intelligent Power Management
- Strategy:
 - not a simple combination of these technologies
 - Computing which exploits synergy of these technologies

- Project supported by NEDO/METI
 - Period : Sep. 2011 Feb. 2016
 - NEDO: New Energy and Industrial Technology Development Organization
 - METI: Ministry of Economy, Trade and Industry
 - Participating Industries: Renesas, Toshiba, Rohm
 - Budget: Half-supported by Government
 (Approx.) \$7M USD / year by NEDO + \$7M USD / year by Industry
 - Project Leader : Hiroshi Nakamura (U. Tokyo)
- Update from MPSoC'13
 - Passed intermediate evaluation last year
 - Progress towards Practical Application

Goal of Normally-Off Computing

Importance of Normally-Off: Power Breakdown of Sensor Node

- Wide Variety: depends on applications
- CPU(idle) is dominant
- Reduction of CPU Idle Power is important
 - Environment Monitoring (*)
 - ☐ HEMS (Home Energy Management System)[Courtesy of Hayashikoshi@Renesas]
 - HRM (Heart Rate Monitoring) (**)

(*) O. Landsiedel et al., "Accurate Prediction of Power Consumption in Sensor Networks," IEEE Workshop on Embedded Sensor Networks, 2005, pp.37-44 (**) S. Izumi et al., "A 14 μ A ECG processor with robust heart rate monitor for a wearable healthcare system," IEEE ESSCIRC, 2013, pp. 145-148

Challenges of N-Off Computing

- Temporal Granularity
 - Finer Granularity is preferable for Power Reduction

BUT,

- Too frequent power gating increases power consumption
- Too frequent NV-RAM accesses consume larger power consumption

- Available Low Power Mode:
 Sleep vs. Deep Stand-by (D-SBY)
 - Sleep : Clock Gating, Power Supplied
 - Quick Resume ©, Small Energy for Resume ©
 - Waste of Idle Power ⊗
 - Deep Stand-by : Clock & Power gating
 - Slow Resume ⊗, Large Energy for Resume ⊗
 - Effective Suppression of Idle Power ©
- Superiority depends on
 - Both System and Application Characteristics

Sleep vs. Deep Stand-By

Parameters Big Core, Little Core, Sensor & Radio

Pitfall

- Replacing volatile RAM with NV-RAM always leads to power reduction ← This is FALSE
- (Important) Access energy
 Non-volatile RAM > Volatile RAM
- → Break Even Time of NV-RAM is important

BET of Non-Volatile Memory

- BET of NV-RAM is 1sec when 1K words are written
- NV-RAM of low access power (=shorter BET) is preferable

NEDO Project Organization

Research Topic (2) "Research on technology to realize innovative normally-off computing for future sustainable social infrastructure"

Central Laboratory

U-Tokyo, Renesas, Toshiba, Rohm

Research Topic (1) "Development of power management techniques by using next generation non-volatile device"

Health Care (ROHM)

ROHM + OMRON HEALTHCARE + Kobe Univ.

●1st gen. Bio-information sensor

P <u>atch</u>	
B <u>attery</u>	
Data transmission antenna	
Bio-information sensing SoC	

Measure	Heartbeat, 3-axis acceleration
Size	22mm*30mm
Weight	About 4g (w/battery, w/o case)
Data Trans- mission	NFC (near field communication) (a.k.a. Wallet Mobile)

Low-power by Normally-Off Computing

Realize wearable measurement by light battery and device

Prevention of lifestyle disease

Block Diagram of ECG Processor

S. Izumi et al., "A 14 µA ECG processor with robust heart rate monitor for a wearable healthcare system," IEEE ESSCIRC, 2013, pp. 145-148

MPSoC'14 (H. Nakamura, U.Tokyo)

N-Off Architecture for Low-power Sensor-node (Renesas) M. Hayashikoshi et.al., "Normally-Off MCU Architecture for Low-Power Sensor Node", IEEE ASP-DAC 2014, Jan. 2014

- Sensor-modules are in "Normally-On". -> "Normally-Off"
- Microcontroller is in "Normally-On" or "Intermittent".

Field Test of Normally-Off Computing

 Demand Transportation System as an IT-assisted convenient public transportation conducted by Renesas Electronics

Detection of Demand/User

Intelligent Bus Stop

Notification of Arrival Time

Bus Dispatch

Direction to Drivers

Test at Nanae Town

Pop. 28,941

Intelligent Bus Stop

Interface

- High Load
 - Camera
 - Display
 - WiFi
 - ...
- Low Load
 - Pyroelectric sensor
 - Button
 - ...

First Prototype Single CPU

→ Heterogeneous CPUs

Bus Dispatched Expected Arrival Time 10:45 Just departed XX

Concluding Remarks

- Opportunities of Normally-Off Computing
 - Intelligent Power Management
 - Non-volatile memory: Potential is extremely high: fast, large capacity, and low power
- Challenges: Temporal Granularity
 - BET is the most important
 - Optimize memory accesses, core activity to meet BET
 - Optimize architecture to make BET longer
 - → Co-Optimization of Algorithm, Software, Architecture and Circuit Design is the KEY
- Status on Smart City Applications (by Renesas and ROHM)

