Programmability of multi-core architectures

Jos van Eijndhoven

CTO & Co-founder

MPSoC 2014 Margaux, France, July 2014

jos@vectorfabrics.com Eindhoven, The Netherlands

Moore's law versus Amdahl's law

What about parallel programming bugs?

```
Global int x = 0, y = 0;
Launch four threads, namely:
• Thread 1: x = 1;
• Thread 2: y = 1;
• Thread 3:
    if (x && !y) print("X first");
• Thread 4:
```

if (y && !x) print("Y first");

Memory ordering issues result in nondeterministic behavior!

Leads to hard-to-find bugs!

Partitioned memory?

Embedded products: growing complexity of code and data

Strong foundation – learn from history?

- Shared-memory multi-cores
- Cache-coherent
- Virtual memory paging
- Single shared OS kernel

Successful abstraction! Proven by 30 years of collaborative compute architecture history IBM, SUN, HP, Intel, AMD, ARM ...

Be careful to create proprietary non-standard solutions!

Classic C/C++ for multi-threading

Three basic primitives, and some OS-level functionality

- Volatile variable declarations: force compiler load/store generation, limit compiler re-orderings
- Memory fence operations: force load/store ordering at runtime in the memory system
- Atomic operations: indivisible read-modify-write (increment, test-and-set)
- Higher-level constructs (semaphores, condition variables) that include OS and kernel support → thread sleep and wakeup

Only 'volatile' is standardized in C/C++. Originally designed for I/O to hardware.

Posix thread library in 1995, fences/atomics are compiler specific intrinsics

Classic C/C++ constructs for threading

Three basic mitives, and some OS-level fundamental fun

- Volatile variable declarations:
 force compiler is tore generation at compiler re-orderings
- Memory fence operation:

 force load/store ordering
 ne in the memory system
- Atomic operations: indivisible read-modified (in pent, test-and-set)
- Higher-level about nons (semaphor condition variables) that include
 OS and kerp nopport → thread sleep wakeup

Get rid of all of this 15 years of programming practice **bold** move by the C++11 committee!

C11/C++11 parallel programming

Creation of multi-threaded programs:

- The C/C++ compiler will always assume multi-threaded access to variables with global scope. This inhibits some optimizations. (C++11 has no 'volatile' to denote inter-thread data exchange)
- Atomic operations are overloaded with memory fence behaviors. These are the basic building blocks for inter-thread synchronization.

Finally: multi-core memory behavior is specified for C/C++! it standardizes on a weak memory ordering!

Your MPSoC adheres to this memory ordering semantics?

Too many paradigms...

OpenCL

Cilk[™] Plus

Semiconductor vendor's sales challenge

Look at the raw performance and power features of our **multicore chip**!

Multicore vendor

What is the cost of **porting my code** to your multicore?

Show me what the **performance and power** of **my code** will be on your multicore

I need **support**! I don't understand how to benefit from the hardware features through my code

Device OEM

Good programmability is required to win enough customers!

Value of programmability: fast adoption

PAREON: performance analysis

PAREON: Schedule data dependencies

April 11, 2014

Pareon technology

- Compile C/C++ sources with instrumenting compiler
- Hijack calls to OS and standard libraries through runtime binary rewrite
- Application execution creates event trace
- Analyze event trace for effect on (some other) target platform

Works for real-world code:

- Google Chromium browser: 10M+ lines of C++, parallelized loop that contains 1M+ lines of code.
- Game engine with 500Klines of code

Software development kit – more tools?

- Basic SDK focuses on programming on just one core
- Multicore tools needed for interactions between cores

- → Parallelism advisor insight in how to partition and map code & data structures
- → Multicore profiler optimize scheduling and memory accesses
- → Dynamic checker check for multicore errors such as data races, deadlocks

Takeaway

- Multicore programming challenge hampers adoption of platforms
- 2. There is no unified manycore programming paradigm, only partial solutions
- Programmers need further multicore programming tools in their SDK

Create multicore chips for programmers, not for hardware designers

Optimize your software

http://vectorfabrics.com

Jos van Eijndhoven
jos@vectorfabrics.com
+31 40 8200960
Eindhoven, The Netherlands