Programmability of multi-core

architectures
Jos van Eijndhoven

CTO & Co-founder

MPSoC 2014
Margaux, France, July 2014

) jos@vectorfabrics.com
/\/\<> VeCtor I:abﬂCS Eindhoven, The Netherlands

Moore’s law versus Amdahl’s law

of transistors

Computational Capacity

A
Hardware capabilities
underutilized
Multicore
Programming
bottleneck
Software
|ntrOdUCti0n Of Performance
multicore
technolog
> time

5 MPSoC 2014

@Vector Fabrics

What about parallel programming bugs?

Globalint x = 0, y = 0;
Launch four threads, namely:
° Threadl: x = 1;

° Thread2: yv = 1;

* Thread 3:

if (x && 'y) print(“"X first”);

Thread 4:

if (y && !'x) print(“Y first”);

Memory ordering issues result in
nondeterministic behavior!

Leads to hard-to-find bugs!

3 MPSoC 2014

geek & poke

DOES IT
WORK?F

-

CONCURRENCY

\/Vector Fabrics

Partitioned memory?

o ntagpe. tets. yutiests Tauing test PouangTestCase |

g

P ——— b o N —_— — .
— — — - — = / 4 N
- —— — - |
P ST -~ [
r/ / \
/ / -
/ / 3
/' / / IA / / / / /]
[[BB) LR L[‘ ‘ g
[g il [z] [| HE [HEHRE
1RHEE ‘ B 8| = . i
3 ¥ % 3 2 y H F] H 3 [£
g : |F P £ i1
13 2 i -
8 HEHEHEBEARE HEE]
(]
%
AR
]
E
]
%
£ 2
1 H
2
£
E J

S~

| nox webapps weoservice webservice webservice

Lnu. netapps lests pyundiests utd parse test u.‘v«-c,...»]

\ =
\ =

\\\

I\

\ ~ —

\\

\ [[ror reaen sows oruviosts v parse eut VirTestcase |
\Lm e Vet pyoiens weesaven ol WesecaTonos |

4 MPSoC 2014

Shared
Memory

Shared
Memory

@

Shared
Memory

Vector Fabrics

Strong foundation — learn from history?

* Shared-memory multi-cores
* Cache-coherent

° Virtual memory paging

° Single shared OS kernel

Successful abstraction!
Proven by 30 years of collaborative
compute architecture history

IBM, SUN, HP, Intel, AMD, ARM ...

Be careful to create proprietary
non-standard solutions!

5 MPSoC 2014

/V\&/

Vector Fabrics

Classic C/C++ for multi-threading

Three basic primitives, and some OS-level functionality

° Volatile variable declarations:
force compiler load/store generation, limit compiler re-orderings

°* Memory fence operations:
force load/store ordering at runtime in the memory system

* Atomic operations:
Indivisible read-modify-write (increment, test-and-set)

° Higher-level constructs (semaphores, condition variables) that include
OS and kernel support = thread sleep and wakeup

Only ‘volatile’ is standardized in C/C++. Originally designed for 1/O to
hardware.

Posix thread library in 1995, fences/atomics are compiler specific intrinsics

6 MPSoC 2014 @Vector Fabrics

Classic C/C++ constructs for threading

Three basi itives, and some OS-level f

* Volatile vari clarations:
re generati

nality

compiler re-orderings

°* Memory fence ope
force load/store orderi

* Atomic operations:
Indivisible read-mogg nt, test-and-set)

* Higher-level a ondition variables) that include

e in the memory system

Get rid of all of this 15 years of programming practice
bold move by the C++11 committee!

- MPSoC 2014 @Vector Fabrics

C11/C++11 parallel programming

Creation of multi-threaded programs:

» The C/C++ compiler will always assume multi-threaded access
to variables with global scope. This inhibits some optimizations.
(C++11 has no ‘volatile’ to denote inter-thread data exchange)

» Atomic operations are overloaded with memory fence
behaviors. These are the basic building blocks for inter-thread
synchronization.

Finally: multi-core memory behavior is specified for C/C++ |
It standardizes on a weak memory ordering!

Your MPSoC adheres to this memory ordering semantics?

8 | April 11, 2014 ACCU conference @Vector Fabrics

many paradigms...

—

l

“MPI

- ;'!
E Passing Interface Standard

SAnviDIA. | Q penMP

b i\H/IEul’ucore
ODenACC

ASSOCIATION
DIRECTIVES FOR ACCELERATORS

RenderScript Intel &
P Cilk™ Plus *—{(/

9 MPSoC 2014 @Vector Fabrics

Semiconductor vendor’s sales challenge

Multicore vendor

[What IS the cost of porting my—

[Show me what the performance l 3

my code will be on your multico

| need support! | don’t understand ho
from the hardware features through m

Good programmabillity is required to win enough customers!

10 MPSoC 2014 @Vector Fabrics

Value of programmability: fast adoption

Technology adoption for accelerators:
Usage in TOP500 supercomputers

45

B
(=]

w
w

o
% 30
=%
o
g 25
H e NVidia
2
= —
g- 20 ATI/AMD
=] ———FPGA
o
—
o Xeon Phi
#® 15
Prediction
10 /

0 1 2 3 4 5

Years after launch

11 MPSoC 2014 @Vector Fabrics

PAREON: performance analysis

@™ @ pareon-ui
2

m Partitions *
o g 5

Name

R sgetf2_
] xerbla_
iz slamch_

g sgetrs_

& printf
»® Loop_238

¥ printf

¥ printf

m My changes =

Property
Loop_32 (sgetf2_)
Loop
#invocations
#iterations / invocation
Invocation time
Mermory penalty
Data cache penalties
Data cache misses
Level 1
Level 2
DRAM traffic
Load count
Store count
Mapped to Instance
Source location

Line coverage

1 InFrwarad linac

P o0p_32

iL,abs View Help Close

Coverage

57

Value
Loop_32 (sqetf2

]

100 (iteration histogram)

3.9ms (39.0us /iteration) (time hist

94.2 us (2.4 %)
92.5 us (2.4 %)

11733 (1.1 %)
8 (0.0 %)
512B (128 KiB/s)
717340
352804

Cpu0.{0}

sgetf2.c:141-185
80.8 %

Delay
71.03F
0.00
0.00
71.92
3.67
0.10
0.02
005
e

&

-

I
I.A

Other performance statistics:
Iteration counts, cache penalties

[3

S

View on call tree with relative

- workload

Loop_232

Loop_32 5.

Loop_32 total loop_carriefl transfer rate: 83.7 Mi transfers/s

0 streaming pattern clfisters (0.0 transfers/s); 1 data dependency clusters (83.7 Mi transferss);
2 compute dependengies (50.0 Ki transfers/s); 6 anti- and output dependency clusters

execution of loop iterations

eaming pattern

]

¥ Inroaucton v @ T

This guide will walk
you through the
process of
parallelizing a loop
in your program.
Click the help icon
on the right to get
more information.
Click the skip icon
to skip an optional
step or dlick the
check icon to mark
the step as
completed and
proceed to the next
step.

[. ¢

ak

1

2D-Profile 7]

The 2D-Profile presents a
birds-eye view on the

function and loop
invocations of wour

Loop-carried dependencies hinder parallel

S G b i e

An invocation can be
selected by a left-click.
The width of a box in the
2D-Profile view is
proportional to the total
time spent in that
invocation on the currently
selected target platform.

The optional Dependencies"

PAREON: Schedule data dependencies

“erore * SRS “armatia ™]
Partitioning candidates - Loop_38 Data partitioning - Loop_38
W Schedule overview

Number of threads = “
LA =< Execution - 99 %
Global speedup: 23 Extra worker threads: 3
Global overhead: 6% Thread creation delay: 420 us
|#¢ Invocation Speedup Overhead Streams
@ Loop_38 39 1% 1 Schedule execution (prologue - steadystate - epilogue)
< Iteration #68 i |teration #72 i [teration #76 y < Iteration #80
48
= = Iteration #69 = Iteration #77 - Iteration #81
Property Value
¥ Loop_38 (sgetf2) i - lteration #78 = Iteration 482
Loop Loop_38 (sgetf2 A 4V
Iteration count 150

* Iteration time

¥ [teration statistics = < eration #75 = eration #79 As «eration #83

Computation time 85.3us (92.7 %)
» Memory penalty 6.8us (7.3 %)

Load count 15770

Store count 7802

Instruction count 104658
Mapped to Instance ARM-A9
Source location sqetf2.c:141-185
Line coverage 792%

» Uncovered lines

13 | April 11, 2014 ACCU conference vVectorFabriCS

Pareon technology

Compile C/C++ sources with instrumenting compiler

Hijack calls to OS and standard libraries through runtime binary rewrite
Application execution creates event trace

Analyze event trace for effect on (some other) target platform

Works for real-world code:

* Google Chromium browser: 10M+ lines of C++, parallelized loop that
contains 1M+ lines of code.

* Game engine with 500KIlines of code

14 MPSoC 2014 @Vector Fabrics

Software development kit — more tools?

Current software development kit * Basic SDK focuses on
programming on just one core

* Multicore tools needed for
interactions between cores

—> Parallelism advisor — insight in
how to partition and map code &
data structures

— Multicore profiler — optimize
scheduling and memory accesses

— Dynamic checker — check for
multicore errors such as data
races, deadlocks

Enabling multicore programming

15 MPSoC 2014 @Vector Fabrics

Takeaway

1. Multicore programming challenge hampers
adoption of platforms

2. There is no unified manycore programming
paradigm, only partial solutions

3. Programmers need further multicore
programming tools in their SDK

Create multicore chips for programmers,
not for hardware designers

16 MPSoC 2014 @Vector Fabrics

. Optimize your software

Unleash the potential

We'll help you get
where you need to be.

http://vectorfabrics.com

Jos van Eijndhoven

jos@vectorfabrics.com

A ’ +31 40 8200960
V Vector I:abHCS Eindhoven, The Netherlands

http://vectorfabrics.com/

