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What about parallel programming bugs?

Globalint x = 0, y = 0;
Launch four threads, namely:
° Threadl: x = 1;

° Thread2: yv = 1;

* Thread 3:

if (x && 'y) print(“"X first”);

Thread 4:

if (y && !'x) print(“Y first”);

Memory ordering issues result in
nondeterministic behavior!

Leads to hard-to-find bugs!
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Partitioned memory?
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Strong foundation — learn from history?

* Shared-memory multi-cores
* Cache-coherent

° Virtual memory paging

° Single shared OS kernel

Successful abstraction!
Proven by 30 years of collaborative
compute architecture history

IBM, SUN, HP, Intel, AMD, ARM ...

Be careful to create proprietary
non-standard solutions!
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Classic C/C++ for multi-threading

Three basic primitives, and some OS-level functionality

° Volatile variable declarations:
force compiler load/store generation, limit compiler re-orderings

°* Memory fence operations:
force load/store ordering at runtime in the memory system

* Atomic operations:
Indivisible read-modify-write (increment, test-and-set)

° Higher-level constructs (semaphores, condition variables) that include
OS and kernel support = thread sleep and wakeup

Only ‘volatile’ is standardized in C/C++. Originally designed for 1/O to
hardware.

Posix thread library in 1995, fences/atomics are compiler specific intrinsics

6 MPSoC 2014 @Vector Fabrics



Classic C/C++ constructs for threading

Three basi itives, and some OS-level f
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Get rid of all of this 15 years of programming practice
bold move by the C++11 committee!
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C11/C++11 parallel programming

Creation of multi-threaded programs:

» The C/C++ compiler will always assume multi-threaded access
to variables with global scope. This inhibits some optimizations.
(C++11 has no ‘volatile’ to denote inter-thread data exchange)

» Atomic operations are overloaded with memory fence
behaviors. These are the basic building blocks for inter-thread
synchronization.

Finally: multi-core memory behavior is specified for C/C++ |
It standardizes on a weak memory ordering!

Your MPSoC adheres to this memory ordering semantics?
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many paradigms...
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Semiconductor vendor’s sales challenge

Multicore vendor

[What IS the cost of porting my—

[Show me what the performance l 3

my code will be on your multico

| need support! | don’t understand ho
from the hardware features through m

Good programmabillity is required to win enough customers!
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Value of programmability: fast adoption

Technology adoption for accelerators:
Usage in TOP500 supercomputers
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PAREON: performance analysis
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This guide will walk
you through the
process of
parallelizing a loop
in your program.
Click the help icon
on the right to get
more information.
Click the skip icon
to skip an optional
step or dlick the
check icon to mark
the step as
completed and
proceed to the next
step.
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The 2D-Profile presents a
birds-eye view on the

function and loop
invocations of wour

Loop-carried dependencies hinder parallel
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An invocation can be
selected by a left-click.
The width of a box in the
2D-Profile view is
proportional to the total
time spent in that
invocation on the currently
selected target platform.

The optional Dependencies"



PAREON: Schedule data dependencies
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Pareon technology

Compile C/C++ sources with instrumenting compiler

Hijack calls to OS and standard libraries through runtime binary rewrite
Application execution creates event trace

Analyze event trace for effect on (some other) target platform

Works for real-world code:

* Google Chromium browser: 10M+ lines of C++, parallelized loop that
contains 1M+ lines of code.

* Game engine with 500KIlines of code
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Software development kit — more tools?

Current software development kit * Basic SDK focuses on
programming on just one core

* Multicore tools needed for
interactions between cores

—> Parallelism advisor — insight in
how to partition and map code &
data structures

— Multicore profiler — optimize
scheduling and memory accesses

— Dynamic checker — check for
multicore errors such as data
races, deadlocks

Enabling multicore programming
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Takeaway

1. Multicore programming challenge hampers
adoption of platforms

2. There is no unified manycore programming
paradigm, only partial solutions

3. Programmers need further multicore
programming tools in their SDK

Create multicore chips for programmers,
not for hardware designers
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. Optimize your software

Unleash the potential

We'll help you get
where you need to be.

http://vectorfabrics.com
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