
Programmability of multi-core

architectures
Jos van Eijndhoven

CTO & Co-founder

jos@vectorfabrics.com

Eindhoven, The Netherlands

MPSoC 2014
Margaux, France, July 2014

MPSoC 20142

Moore’s law versus Amdahl’s law

Computational Capacity

Software

Performance

#
 o

f
tr

a
n

s
is

to
rs

Introduction of

multicore

technology

Hardware capabilities

underutilized

Multicore

Programming

bottleneck

time

MPSoC 20143

What about parallel programming bugs?

Global int x = 0, y = 0;

Launch four threads, namely:

• Thread 1: x = 1;

• Thread 2: y = 1;

• Thread 3:

if (x && !y) print(“X first”);

• Thread 4:

if (y && !x) print(“Y first”);

Memory ordering issues result in

nondeterministic behavior!

Leads to hard-to-find bugs!

MPSoC 20144

Partitioned memory?

Embedded products: growing complexity of code and data

MPSoC 20145

Strong foundation – learn from history?

• Shared-memory multi-cores

• Cache-coherent

• Virtual memory paging

• Single shared OS kernel

Successful abstraction!

Proven by 30 years of collaborative

compute architecture history

IBM, SUN, HP, Intel, AMD, ARM …

Be careful to create proprietary

non-standard solutions!

MPSoC 20146

Classic C/C++ for multi-threading

Three basic primitives, and some OS-level functionality

• Volatile variable declarations:

force compiler load/store generation, limit compiler re-orderings

• Memory fence operations:

force load/store ordering at runtime in the memory system

• Atomic operations:

indivisible read-modify-write (increment, test-and-set)

• Higher-level constructs (semaphores, condition variables) that include

OS and kernel support  thread sleep and wakeup

Only ‘volatile’ is standardized in C/C++. Originally designed for I/O to

hardware.

Posix thread library in 1995, fences/atomics are compiler specific intrinsics

MPSoC 20147

Classic C/C++ constructs for threading

Three basic primitives, and some OS-level functionality

• Volatile variable declarations:

force compiler load/store generation, limit compiler re-orderings

• Memory fence operations:

force load/store ordering at runtime in the memory system

• Atomic operations:

indivisible read-modify-write (increment, test-and-set)

• Higher-level abstractions (semaphores, condition variables) that include

OS and kernel support  thread sleep and wakeup

Get rid of all of this 15 years of programming practice

bold move by the C++11 committee!

ACCU conference8 | April 11, 2014

C11/C++11 parallel programming

Creation of multi-threaded programs:

The C/C++ compiler will always assume multi-threaded access
to variables with global scope. This inhibits some optimizations.
(C++11 has no ‘volatile’ to denote inter-thread data exchange)

Atomic operations are overloaded with memory fence
behaviors. These are the basic building blocks for inter-thread
synchronization.

Finally: multi-core memory behavior is specified for C/C++ !

it standardizes on a weak memory ordering!

Your MPSoC adheres to this memory ordering semantics?

MPSoC 20149

Too many paradigms...

?
MCAPI

MPSoC 201410

Semiconductor vendor’s sales challenge

Look at the raw performance and power

features of our multicore chip!

What is the cost of porting my code to your multicore?

Show me what the performance and power of

my code will be on your multicore

Multicore vendor

Device OEM

I need support! I don’t understand how to benefit

from the hardware features through my code

Good programmability is required to win enough customers!

MPSoC 201411

Value of programmability: fast adoption

ACCU conference12 | April 11, 2014

PAREON: performance analysis

Loop-carried dependencies hinder parallel
execution of loop iterations

Other performance statistics:
Iteration counts, cache penalties

View on call tree with relative
workload

ACCU conference13 | April 11, 2014

PAREON: Schedule data dependencies

Obtain a preview on a potential parallelization
assume synchronization on complex dependencies

Estimate multi-thread fork/join overhead

MPSoC 201414

Pareon technology

• Compile C/C++ sources with instrumenting compiler

• Hijack calls to OS and standard libraries through runtime binary rewrite

• Application execution creates event trace

• Analyze event trace for effect on (some other) target platform

Works for real-world code:

• Google Chromium browser: 10M+ lines of C++, parallelized loop that

contains 1M+ lines of code.

• Game engine with 500Klines of code

MPSoC 201415

Current software development kit

Enabling multicore programming

Software development kit – more tools?

• Basic SDK focuses on

programming on just one core

• Multicore tools needed for

interactions between cores

Parallelism advisor – insight in

how to partition and map code &

data structures

Multicore profiler – optimize

scheduling and memory accesses

Dynamic checker – check for

multicore errors such as data

races, deadlocks

Compiler

Debugger

Profiler

Parallelism

advisor

Dynamic

checker

Multicore

profiler

MPSoC 201416

Takeaway

1. Multicore programming challenge hampers

adoption of platforms

2. There is no unified manycore programming

paradigm, only partial solutions

3. Programmers need further multicore

programming tools in their SDK

Create multicore chips for programmers,

not for hardware designers

Optimize your software

http://vectorfabrics.com

Jos van Eijndhoven

jos@vectorfabrics.com

+31 40 8200960

Eindhoven, The Netherlands

http://vectorfabrics.com/

