A Latency Reduction Technique for Network Intrusion Detection System on Multicores

Keiji Kimura, Shohei Yamada, Hironori Kasahara Waseda University

Introduction

- Network is connecting everything.
 - Servers, Phones, Vehicles, Sensors, ...
- Network security threat has been more serious than before.
 - Old days: Only administrator must take care of it.
 - Today: Everyone must take care of it.
- Intrusion Detection System (IDS)
 - Protecting against inbound/outbound attacks
 - Low-power and High-performance will be required for future IDSs.
 - Use Multicores more efficiently!
- Multicore for IDS
 - Today: Throughput oriented (Multiple packets at a time)
 - This talk: Latency oriented
 - Signature (Rule) based parallel processing

Overview of IDS (NIDS)

Suricata

- Open Source IDS (2010-)
 - Funded by the Department of Homeland Security's Directorate for Science and Technology in USA
- Packet Pipeline
 - Decode: convert packets into intermediate data structure
 - Stream: packets are reassembled as a stream
 - Detect: detect treats by rule matching
 - Output: make alert
- Throughput Oriented Architecture
 - Packet level parallelism

Signature (Rule) Decomposition

- Signature Classification
 - HTTP header inspection
 - Payload inspection
 - Others
 - threshold-check
 - app-layer-event
 - flag-check
 - byte-test
 - decode-event
 - csum-check
 - stream-event
 - other-event

Parallel processing among these signatures is efficient.

Parallel processingamong thesecategories is efficient.

Scheduling these three categories and signatures in "Others" according to the profile data.

cf. – Haiyang Jiang, et al., "Load Balancing by Ruleset Partition for Parallel IDS on Multi-Core Processors", ICCCN 2013 – Zhuojun Zhuang, et al., "A Resource Scheduling Strategy for Intrusion Detection on Multi-Core Platform", IFIP ICNPC 2008

Multi-pipelined Suricata

Preliminary Evaluation

- Processing Trace Data on a Local HDD
 - Xeon L5630 (@2.13GHz*4core)
 - Evaluate on 2, 3, 4 cores
 - 1core for control thread
 - Suricata 1.4.5
 - Original vs. Multi-pipelined
 - Compare total execution time
 - Rule-set: emerging-rules (Sep. 1st, 2013)
 - 13,799 signatures

Evaluated Trace Data Set

- DARPA Intrusion Detection Evaluation Data Set (5th week, 1999)
 - Large Processing Cost for HTTP Header Inspection
- Lab. Data (from our lab., Jan, 2014)
 - Large Processing Cost for Other Inspection (than HTTP and Payload)

Data Set	Data	# of Packets	Size (MB)	
DARPA data set	Monday	3,667,917	783	Used for scheduling
	Tuesday	5,962,053	899	
	Wednesday	3,473,044	800	/
	Thursday	5,509,639	1,350	
	Friday	6,045,505	1,920	
Lab. data set	lab01	1,669,404	999	
	lab02	5,615,310	2,920	
	lab03	3,403,158	1,950	
	lab04	5,577,077	2,920	
	lab05	5,270,379	2,920	

Speed-up on DARPA Data

Speed-up on Lab. Data

Conclusion

- Process Latency Reduction Technique for IDS on Multicores
 - Rule (Signature) based Parallel Processing
 - Decompose rule-set considering characteristics of each rule
- Evaluation of Multi-pipelined Suricata on 4-cores
 - 1-core for control thread, 3-core for detection threads
 - x2.69 speed-up for DARPA dataset against 2-cores
 - x2.63 speed-up for Lab. dataset against 2-cores
- Future topics
 - Evaluation on Network Environment
 - Hierarchical Parallel Processing
 - Latency oriented and Throughput oriented
 - Considering Available Resources and Processing Load
 - Power Optimization