Evaluating Power-Efficiency for an Embedded Microprocessor with Fine-Grained Power-Gating

Masaaki Kondo

Graduate School of Information Science and Technology
The University of Tokyo

Background

- SMYLEref manycore-processor [1]
 - Manycore SoC architecture &FPGA evaluation environment with 128-cores
 - Processor core: Geyser-3
 - Low-power core with fine-grained power-gating

- Still occupies non-negligible part of total power consumption even with advanced semiconductor technology
 - 15% 25% of total chip power according to recently published papers
- Reduction of runtime leakage-power is important

Introduce fine-grained runtime power-gating capability in Geyser-3

Acknowledgement

- JST-CREST project (2006.10 2012.3)
 - Innovative Power Control for Ultra Low-Power and High-Performance System LSIs
 - PI: H. Nakamura (U. Tokyo)
 - Co-PI: K.Usami, H.Amano, M.Namiki, T.Kuroda, M.Kondo (JST: Japan Science and Technology Agency)
- □ Follow-up project: JSPS KAKENHI (S) (2013.4-2017.3)
 - A Study on Building-Block Computing Systems using Inductive Coupling Interconnect
 - PI: H. Amano (Keio Univ.)
 - Co-PI: K.Usami, H.Nakamura, M.Namiki, T.Kuroda, M.Kondo (JSPS: Japan Society for Promotion of Science)

Power-Gating

- □ Power-gating (PG) technique
 - Sleep transistors between GND and NMOS transistors of logics
 - Cuts power-supply to the logic blocks
 - Active/sleep mode controlled by sleep signals
 - → PG can be applied with finer temporal / special granularity

Chip Implementation of Fine-Grained Power-Gating (Code Name: Geyser-3)

- Proof-of-concept study for Fine-grained power-gating
 - MIPS R3000 compatible embedded microprocessor
 - Target power-gating unit: Functional units (ALU, Shifter, Multiplier, and Divider)
 - Linux successfully operates @ 190MHz

Process Technology	Fujitsu e-shuttle CMOS 65nm,12 metal layers			
Area	ALU: 121.4 x 113.4 Shift: 116.4 x 114.8 Mult: 199.4 x 199.4 [um x um] Div: 369.0 x 368.6 Total: 1610 x 1443			
Vdd	1.2 [V]			
L1 cache	L1-I: 8KB, 64B-line, 2way L1-D: 8KB, 64B-line, 2way			
Synthesis	Synopsys Design Compiler			
Layout	Synopsys ICC UPF			

Basic Power-Gating Functionality in Geyser-3

- Hardware-based PG policy
 - Individually control PG for each FU
 - Whenever an FU is in idle, the FU is put to sleep mode
 - Detect and wakeup an FU to be used in IF-stage by pre-decoding
 - one-cycle time margin for the wakeup

Energy Overhead of Power-Gating

- □ If *Tsleep* > BEP : reduction of energy consumption ⓒ
- If T_{sleep} < BEP : increase in energy consumption \odot
- Needs "guard" mechanisms to avoid negative benefit of PG

Compiler Support for PG Control

□Compiler support

- Compiler disables hardware-based PG instruction-by-instruction
- Based on expected idle period and BEP

□ISA extension

- Assign unused opcode for disabling hardware-PG
- binary-compatible with MIPS processors

■Code generation

- If predicted idle period for each instruction is less than BEP, use special opcode for disabling HW-based PG functionality
- Otherwise, normal PG

Compiler Guided Idle Cycle Prediction

Prediction Steps

- Generate CFG from assembly code
- 2. For each node, estimate the period between current node and node which uses the target FU (based on data-flow analysis technique)
- Pass idle cycle info. between procedures (interprocedural analysis)

Evaluation

- Evaluate FUs' power supply domain
 - Electric-current sensor measures the electric current every 33ms
- Configuration
 - Core clock frequency: 40MHz (due to board I/O limitation)
 - Benchmark: several programs from MiBench
 - gcc soft-float functionality for floating-point operations
 - Ambient temperatures: 25C and 55C
- Assumed BEP (cycles) for code generation

	ALU	Shift	Mult	Div
BEPset (for 25C)	56	47	28	11
BEPset (for 55C)	21	21	11	4

Evaluation Environment

□ Chip temperature control facility

Basic Power-Gating Performance of Geyser-3

- □ All FUs are statically powered-on (ON) vs. powered-off (OFF)
 - Clock signal is stopped to exclude dynamic power
- About 97% of leakage current reduction

Evaluation Result (1/2)

- Power reduction by hardware-based PG scheme
 - Power consumed in FUs (including dynamic power)
 - Significant power reduction
 - On average, 44% for 25C and 67% for 55C

Evaluation Result (2/2)

- Effect of compiler support
 - Save more power by compiler cooperated PG

Summary

- ☐ Geyser-3
 - MIPS R3000 like processor core
 - Used in SMYLEref manycore-processor
 - Run-time fine-grained power-gating for leakage-power reduction
- Evaluation of fine-grained power-gating in Geyser-3
 - Compiler support for power-gating management
 - 47% 67% of power reduction
 - Additional 5.9% more power saving with compiler support
- Future work
 - OS support for dynamic object code management
 - Evaluate power efficiency in manycore environment

Thank you!