

Low-Power Processor Solutions for Always-on Devices

Pieter van der Wolf

MPSoC 2014 July 7 – 11, 2014

Always-on Mobile Devices

Mobile devices on the move

- Mobile devices are becoming context-aware
 - Use sensors to monitor movement, heart rate, sound, etc.
- Enables new applications
 - Smarter mobile devices performing new functions
 - Changes the way users interact with the devices
- Always-on
 - Always listening
 - Microphone input Voice activation
 - Always watching
 - Camera input
 Face activation, wake-on-gesture
 - Always sensing
 - Sensor input
 Motion sensing, health & fitness monitoring
 - Always connected
 - Wireless links
 Cloud data push services, Bluetooth LE

Always-on Mobile Devices

Devices with different characteristics

Always-on Mobile Devices

Processors for always-on processing

Processor for always-on

- Operate in different SoC contexts
- Fmax typically < 100 MHz
- Lowest power in each mode
- Mixed control and DSP

Separate core for always-on processing

 Wake-up application processor only when needed

Low power

- > 10x lower power than application processor
- Battery in wearable needs to last weeks

Multiple modes

E.g. voice activation:

- Standby / detection mode
- Recognition mode

Mixed control and DSP

DSP for processing of sensor inputs

Voice Activation

Detect

- System mostly resides in detect state, needs lowest power
- Very light workload (< 1 MHz)

Recognize

- Activated when sound is detected
- Applies DSP algorithms to recognize voice command(s)
- Higher workload (5 10 MHz for single phrase recognition)

Wake-up

Trigger action in application

Memory Configurations

Closely coupled memories

- DMA stores data in DCCM while processor sleeps
- DMA wakes up processor when buffer available
- After wake-up, processor does not have to access data over AHB bus
 - No energy spent in bus accesses
 - Lower latency → processor can run at lower frequency

- Sensor hub application
- Analysis of processing stage
- Core and bus at same frequency
- Bus-based with instruction fetch queue

Voice Activation

Power management

- Voice activation detect mode
 - At 10 MHz processing duty cycle < 2.5%
- Opportunity for energy savings
 - But need to allow access to DCCM for DMA
 - Would be no different with memory on AHB bus

Voice Activation

Power management

- Sleep between executions of detect function
 - Fast sleep and wake-up
 - Low sleep power → simple and effective
- Frequency scaling
 - Saves sleep power (only)
 - Requires clock domain crossings
- Voltage switching
 - Saves leakage power as well
 - Requires switch, clamps, data retention, PMU

Instruction Set Architecture

- It's all about power energy
 - Minimize energy per function → power x cycles
- Mixed control and DSP
 - Good power and efficiency for RISC and DSP
- Code size
 - Memory footprint, active memory power, I-cache miss rate
- Data types
 - Fractional Q31, Q15, Q7
- DSP instructions
 - MUL/MAC operations
 - Rounding & saturation
 - Vector operations 2x16 & 4x8
 - Complex (16+16)x(16+16)
 - Vector unpacking

- Vector 16x16 MAC
 - acc.lo += a.lo * b.lo
 - acc.hi += a.hi * b.hi
- Dual 16x16 MAC
 - Inner-product style
 - acc += a.lo * b.lo + a.hi * b.hi

Energy Consumption

For DSP workloads

- Energy consumption for categories of DSP functions
 - Logic dynamic energy
 - For Q31 & Q15 DSP functions
- Small code size
 - Code size Q31: 57%
 - Code size Q15: 89%
- Low power implementation
 - Unified MUL/MAC unit
 - Aggressive clock gating
 - Operand gating / isolation
- Configurability & extensibility

Energy Consumption

For RISC and DSP workloads

Note: energy consumed for executing fixed workloads

ARC EM Processors

Combining High Efficiency Control & Digital Signal Processing

Power & Area Efficient Processors based on Extensible ARCv2DSP Architecture

EM5D	Up to 2MB Instruction and Data CCMs
EM7D	I & D CCMs plus I & D Caches (up to 32K)

- ARCv2DSP ISA adds over 100 new DSP-focused instructions
 - Vector/SIMD, Matrix, Saturating & Complex
 - Configurable DSP hardware features
- New EM5D & EM7D cores optimized for ultra low-power control and DSP
 - Energy-efficient 3-stage RISC pipeline
 - Unified single cycle 32x32 MUL/MAC unit
 - Energy-efficient signal processing of voice/speech, audio and sensor data
 - Optional Floating Point Unit (SP & DP)
- Easy software development with rich DSP software library & C/C++ Compiler

Conclusions

- Need to optimize at all levels for low energy
 - Efficient ISA for mixed control and DSP
 - Energy efficient access to memories (CCMs)
 - Low power hardware implementation (clock & operand gating)
 - Effective sleep modes
 - Configurability and extensibility
- Significant energy reductions can be achieved
 - Good application fit is key
 - Good design choices matter
- Flexibility is key to fit in different SoC contexts
 - Memory architecture
 - Power management schemes

