
The Plural Architecture
Shared Memory Many-core with Hardware Scheduling

Ran Ginosar
Technion—Israel Institute of Technology

& Ramon Chips, Ltd.
Israel

MPSoC July 2014
1

Technion

P P P P P P P P

P-to-M resolving NoC

Low (zero) latency parallel scheduling
enables fine granularity

scheduler

P-to-S
scheduling NoC

The Plural Architecture

Hardware scheduler / dispatcher / synchronizer

Shared Memory “Anti-local” address interleaving
Negligible conflicts

Many small processor cores
Small private memories (stack, L1)

Fast NOC to memory
(Multistage Interconnection Network)
NOC resolves conflicts

SHARED memory, many banks
~Equi-distant from cores (2-3 cycles)

2 external memory, IO

3

The Plural task-oriented programming model

• Programmer generates TWO parts:
• Task-dependency-graph = ‘task map’
• Sequential task codes

• Task maps loaded into scheduler
• Tasks loaded into memory

 singular
 duplicable task xxx(dependencies)
 control
{
 … # …. // # is instance number
 …..
}

Task template: P P P P P P P P

P-to-M resolving NoC

scheduler

P-to-S
scheduling NoC

Shared memory

Fine Grain Parallelization
Convert (independent) loop iterations

for (i=0; i<10000; i++) { a[i] = b[i]*c[i]; }

 into parallel tasks

set_quota (XX,10000)

duplicable task XX
{ a[#] = b[#]*c[#]; }
 // # is instance number

4

XX

Task map

duplication

5

Example: Linear Solver

PIPELINED stream processing: ManyFlow
Example: JPEG2000

6

)

A

B

C

) D

E

6

B

A C

D

E

Low utilization: only 65%

Image compression time: 160 (relative time units)

DWT
(highly
parallel *)

Bit-plane
encoding
(highly
parallel *)

Time

Num. cores
utilized

Max 64 cores

serial

serial

serial

 Hardware-like Pipeline

Needs 5 stages: two with 64 cores each, three with one core each (total 131 cores)
If only 64 cores, time / step = 64x2 + 25 = 153 (how ? What is the utilization?)
Hard to program, inefficient, inflexible, fixed task per core. Need to store 5 images

7

Step i
Time step i+1 Step i+2 Step i+3 Step i+4 Step i+5 Step i+6

Step i+7 Image k+4

Image k+5

Image k+6

Image k+7

Image k+3

Image k+2

Image k+1

Parallel / pipelined ManyFlow

8

All stages independent (order does not matter)
Æ Can run concurrently
Æ Scheduler will dispatch most efficiently

Image
k

Image
k+1

Image
k+2

Image
k+3

Image
k+4

Step i

Bottleneck: need to store 7 images

) A B C) D E Input
raw image

Output
compressed

image

Pipeline
Stage Sync

Parallel / pipelined ManyFlow
(automatically scheduled)

9

Higher utilization: 99%

B

A C

D

E

Image compression time (piped): 95

10

The Plural Architecture: Some benefits
• Shared, uniform (~equi-distant) memory

• no worry which core does what
• no advantage to any core because it already holds the data

• Many-bank memory + fast P-to-M NoC
• low latency
• no bottleneck accessing shared memory

• Fast scheduling of tasks to free cores (many at once)
• enables fine grain data parallelism
• harder in other architectures due to:

• task scheduling overhead
• data locality

• Any core can do any task equally well on short notice
• scales well

• Programming model:
• PRAM-like
• intuitive to programmers
• “easy” for automatic parallelizing compiler & formal verification (?)

Summary
• Simple many-core architecture

• Inspired by PRAM
• Hardware scheduling
• Task-based programming model
• Designed to achieve the goal of
‘more cores, less power’

11

