<<l

~w

M RAMONChips@

Technion

The Plural Architecture
Shared Memory Many-core with Hardware Scheduling

Ran Ginosar
Technion—Israel Institute of Technology

& Ramon Chips, Ltd.
Israel

MPSoC July 2014

<<l

The Plural Architecture

scheduler

1

P-to-S
scheduling NoC

A a A a S y S S

v v Vv Vv Vv V¥
[PlPflrf{Pl{r]lr]lr|lP]
A A A

\ 4 \ 4 \ 4 \ 4 v \ 4 \ 4 \ 4

P-to-M resolving NoC

Shared Memory

external memory, 10

Hardware scheduler / dispatcher / synchronizer

Low (zero) latency parallel scheduling
enables fine granularity

Many small processor cores
Small private memories (stack, L1)

Fast NOC to memory
(Multistage Interconnection Network)
NOC resolves conflicts

SHARED memory, many banks
~Equi-distant from cores (2-3 cycles)

“Anti-local” address interleaving
Negligible conflicts

The Plural task-oriented programming model

 Programmer generates TWO parts:
» Task-dependency-graph = ‘task map’
« Sequential task codes

« Task maps loaded into scheduler
» Tasks loaded into memory \
singular

duplicable| task xxx(dependencies)
control

{

Task template:

.. # /] #isinstance number

/scheduling NOC\

scheduler

A A A AA
F v vVEYVYY

P-to-S

A

v v Vv Vv Vv V¥
[P lPflrf{Pl{r]lr]lr|lP]
A A A

v

P-to-M resolving NoC

Shared memory

<<l

Fine Grain Parallelization

Convert (independent) loop iterations
for (i=0;, i<10000; i++) { a[i] = b[i]l*c[1i]; }

into parallel tasks
set quota (XX,10000)

duplicable task XX
{ al#] = b[#]*c[#]; }

// # is instance number Task map

|
I

cﬂmhaﬁnm

{

Example: Linear Solver

e
7 w?.&'o"“ :-;ﬁ‘?\i}?g
P ppOO e

G

i

«
©

H
i
a

i

PIPELINED stream processing:

Example: JPEG2000

Num. cores
utilized

A
C

D

J

serial

DWT

(highly
parallel *)

serial

Bit-plane
encoding

(highly
parallel *)

¥

Max 64 cores

ManyFlow

/0

60 -

50 +

40

30

20 +

10 -

106
113

127

134

«

120
141

E

Time

Low utilization: only 65%

Image compression time: 160 (relative time units)

(o))

Hardware-like Pipeline

Time step i+1 Step i+2 Step i+3 Step i+4 Step i+5 Step i+6

Step i Image k+4 Step i+7
] — =
= Image k+5
—] —]
© k+1 Image k+6
] === —]
B Image k+2 Image k+7 I
— — — —
Image k+3 |
e - e —

Needs 5 stages: two with 64 cores each, three with one core each (total 131 cores)
If only 64 cores, time / step = 64x2 + 25 = 153 (how ? What is the utilization?)
gHard to program, inefficient, inflexible, fixed task per core. Need to store 5 images

<<l

Image
k+4

Image

Image
k+1

Image
kK+2

Image
k+3

Parallel / pipelined ManyFlow

Step |

All stages independent (order does not matter)
—> Can run concurrently
= Scheduler will dispatch most efficiently

Input u Output
raw image C D E compressed

image

Pipeline
Stage Sync

Bottleneck: need to store 7 images

Parallel / pipelined ManyFlow

automatically scheduled) o
age compression time (piped): 95 Higher utilization: 99%

70

60 |

=]

The Plural Architecture: Some benefits

Shared, uniform (~equi-distant) memory

* no worry which core does what

* no advantage to any core because it already holds the data
Many-bank memory + fast P-to-M NoC

* low latency

* no bottleneck accessing shared memory
Fast scheduling of tasks to free cores (many at once)

* enables fine grain data parallelism

* harder in other architectures due to:
 task scheduling overhead
« data locality

Any core can do any task equally well on short notice
» scales well

Programming model:
« PRAM-like
 intuitive to programmers

» “easy” for automatic parallelizing compiler & formal verification (?)

10

<<l

Summary

Simple many-core architecture
* Inspired by PRAM

Hardware scheduling
Task-based programming model

Designed to achieve the goal of
‘more cores, less power’

11

