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Power Density

Ever increasing power density leads to high temperature in chip, which

accelerates temperature-elevated intrinsic failure mechanisms, like NBTI.
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Reliability vs. Technology

Device wear out is clearly observed and also End-of-Life approaches
faster as technology advances.
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Reliability is Important for...

Space Missions Spaceship Military Service
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Small Failures May Cost a Lot!

A small leak may sink a great ship.

= B-2 bomber crash in Guam 2008
* SUSD 1.4B loss

= 3 air data sensors malfunction,
moisture in the transducers during
calibration distorted the information in
the air data system.

= This caused the flight control computers
to calculate inaccurate airspeed and
negative angle of attack upon takeoff.

http://telstarlogistics.typepad.com/telstarlogistics/2008/08/photos-and-vide.html
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Reliability Becomes More Difficult

« Device dimension decrease
continuously, physical limit is
approaching.

* New device structures and
materials introduces new
reliability concerns.

* Manufacturing variability
increases since process
geometries gets smaller, optical
diameter doesn’t decrease

Lower Reliability proportionally,
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Reliability Challenges

The most reliability challenges come from Variability, which can be further
divided into three categories: spatial, temporal, and dynamic variability.

Manufactured
Defects
Global
Variations
Random
Variations Variability
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Failure Mechanisms

NBT!iOZ Sio, HCI

E-field] 1 o N IE-ﬁeld Interface P i 9

Silicon Silicon

Silicon {

Oxygen
o

Silicon

Hydrogen
°

= Holes from the inversion layer tunnel into the gate oxide, = " Lucky electrons" gain enough energy while drifting

break the Si-H bonds and leave behind interface traps. across the channel.

= Hydrogen diffuses away from the Si/SiO2 interface. = The “hot” electrons produces interface damage in a

localized region near the drain end.

leads a positive shift of |V,,| to the device;
O NBTI and HCI highly depends on the stress probability at the device;

variations.

O NBTI and HCI creates hole traps at Si/SiO2 interface and in the oxide, which

O Furthermore, NBTI and HCI are prone to voltage fluctuation and temperature
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Failure Mechanisms — Cont’d.

TDDB

= The gate oxide breaks down as a result of long-time
application of relatively low electric field.

= The breakdown is caused by formation of a conducting
path through the gate oxide to substrate due to electron
tunneling current, when MOSFETSs are operated close to
or beyond their specified operating voltages.

= Electromigration is the transport of material caused by
the gradual movement of the ions in a conductor due to
the momentum transfer between conducting electrons
and diffusing metal atoms.

= As the structure size in ICs decreases, the practical
significance of this effect increases.

O TDDB and EM are discovered and well studied for quite a long time, but with
decreasing oxide thickness and metal width, they could be still troubles;

O The breakdown of these failure mechanisms is progressive, but the damage
can be permanent as effects accumulates.
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Process Parameter Variations

Source: Intel Source: Intel
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As Scaling Continues...
Multi/Many core processor is more power efficient, and give more
flexibility to perform DRM with graceful degrading policy!
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DRM Concepts & Applications
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A DRM Framework

DRM Software Multi-core Processor
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The Impact of Dynamic Reliability Management

Wgecontrol

+ Boosts/throttles maximum assignable voltage
* +25% peak performance with typical workload/temperature
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In a DRM System,
the maximum voltage
can be “boosted” to
allow periods of
higher peak
performance while
maintaining a margin
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Reliability-Aware Design and Computing Platforms
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DRM System Critical Issues

@ Degradation Model ‘

Device degradation model is the corner stone of DRM system, which
describes the physical and thermodynamic processes of aging failure
mechanisms.

Aging Sensor ‘

Aging sensors are specific-designed compact circuitries, which are used
to online extract the degradation/reliability status from circuit under test/
observation.

@ Reliability Assessment ‘

System level reliability status can be obtained by multiple online aging
sensors with elaborately selected location, cooperating with certain
system level reliability assessment methods.

@ Reliability Tuning ‘

Reliability Tuning techniques include DVFS, task scheduling, body
biasing and so on.
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DRM Concepts & Aging Sensors

Aging Sensor(s) is the criticz

component of DRM System
O Small, in-situ deployment

O Non-intrusive to normal

function

Delay
—

O Variati -tol t i
ariation(s)-toleran Msujss
onitor b
O Easy to calibrate T T
O Technology portable Pulse
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V,,-Based Aging Sensors

Combinational
Logic
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Sensor

Stress

Monitor

Pulse
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Pulse 1 T
Sensor #040—'_'—‘4—
Sensorﬁl%
Sensor #n ! I
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onitor t

Delay : = =
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+ Proposed Aging Sensors for NBTI and

HCI

NBTI, HCI are major reliability concerns
of modern ICs

V,, degrades due to NBTI, HCI

Using sacrificed DUT to duplicate a
same aging stress

V;, transformed into time-domain using
VCDL
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Simulation Results — V&T Stability

V,, deviation relative to normal condition (T=27 *C and VDD=1.2 V) with
temperature and voltage variations.

percentage (%)
percentage (%)

50

0
1.1 - 117 - °
VDD (V) 50 temperature ('C) VDD (V) 50 temperature ( C)

(a) NBTI Sensor (b) HCI Sensor

O For extreme conditions (i.e., VDD=1.1V, T=150 °C), the deviation is about 16%
for the NBTI sensor, and 17% for the HCI sensor.
O Assume a normal variation range is (0°C, 60 °C) and VDD+0.05V, the worst

page » 25 case error of the proposed sensors is less than 8%.

IG-FinFET SRAM Cell

Endo etc. INEC. 2011

IG-FinFET 6T SRAM

BL cell:

(a)allows to control Vy,
for SRAM cells;

(b)no significant area &
power consumption

Vean Vss trade-off introduced.

Independent-Gate , B

FinFET

NBTI mitigation is possiblg
by using IG-FinFETs!
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NBTI Mitigation Using Iy5q Monitor

ct g_ol Vecr—|
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Flex-PG l

Proposed Mitigation Scheme

() After 10-yearoperaion

@) Fresh device
6T-SRAM cell leakage distribution of fresh device and aged device (10-year operation
at 50 © C) using 20 nm FinFET technology with ~10 mV, 0 mV, and 10 mV
global variations, respectively.
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Practical VBPG Compensation
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SNM improvement with the VBPG and Flex-PG
degradation margins.

compensating technique

CDF/PDF, MTTF of Weibull Distribution: F(tj=1-e"®="

Why Don’t We Utilize MTTF?
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* Not time-dependent.

Similar MTTFs, but quite different reliability characteristic during

operating time

reliability characteristic.
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Virtual Age Model

Normal Operating Condition

o
=
o

Reliability
o
o

025

1.
0 05 1
Time(Normalized)

Virtual age can be defined as the
equivalent reliability status in a
stochastic working environment when
referring to a baseline environment.

R,(t) = Rp(ts)
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Reliability

Accelerated Condition
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Virtual age can be computed as:

ts =V(t) = R, (Rs(t))

Time-to-Failure (TTF)

Normal Operating Condition

Accelerated Condition

1 1 —_—
!
|
= 0.954- - = 0954 — — — — —.— j—— =
3 3 i
& & b
09r 09 :
|
r—tSZ‘v'(t:l
0.85 0.85 L
0 0 2 4
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IC’s expected operational life can be defined as: D, =TTF )

Thus equivalent virtual age of TTF is:
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=R'(A1—rn)
TTF" = TTF (n) -VirtualAge
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TTF Estimation

Normal Operating Condition Accelerated Condition
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By using double exponential smoothing, TTF can be estimated as:
Dn - Zg Ats,i
% : Zi‘,:] S/n:i

where s, ;| is the estimated “aging” speed of next / intervals.

TTF =

Page = 31

Conclusions

O Reliability situation is severer than ever in IC
designs, and it's getting worse and worse;

ODRM handles gradual reliability threats at run-

time; DRM is not only important for safety-critical
applications, but also for consumer electronics in

daily life;

O Multi-/Many-core processors provide a great

opportunity to perform DRM on these platforms;

OPVT variations must be considered in order to
have an accurate measurement from on-chip
aging sensors.
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