

An Efficient Performance Estimation Method of MPSoC with Configurable Multi-layer **Bus System**

MASAHARU IMAI, SALITA SOMBATSIRI AND YOSHINORI TAKEUCHI GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY OSAKA UNIVERSITY

2015/07/14

MPSOC 2015

Agenda

Introduction

- Definition of Models: System-Level Model and Architectural Model
- Architecture Exploration Method for MPSoC
- Performance Estimation Method
- Configurable Multi-layer Bus-based SoC
- Case Study
- Conclusion and Future Work

2015/07/14

Contribution of this research

- Architecture exploration method for multi-processor SoC
- Efficient performance estimation method for multi-layer bus-based SoC
 - Model standard bus protocols' features
 - Dynamic behavior such as pipeline transfer, burst transfer, split response operation, error response operation, bus preemption
 - ●Efficient performance estimation method by analyzing Architecture-Level Execution Dependency Graph (AL-EDG)
 - Recognize bus contention
 - Predict behavior of shared buses and multi-layer bus during performance
 - Estimate performance by analyzing AL-EDG according to speculated bus behavior

2015/07/14

MPSOC 2015

Agenda

Introduction

Definition of Models: System-Level Model and Architectural Model

- Architecture Exploration Method for MPSoC
- Performance Estimation Method
- Configurable Multi-layer Bus-based SoC
- Case Study
- Conclusion and Future Work

2015/07/14

- Introduction
- Definition of Models: System-Level Model and Architectural Model

Architecture Exploration Method for MPSoC

- Performance Estimation Method
- Configurable Multi-layer Bus-based SoC
- Case Study
- Conclusion and Future Work

2015/07/14

MPSOC 2015

Related Work

- Communication architecture exploration
 - Bus architecture optimization based on bus template[1]
 - Mapping data transfer to bus template
 - Bus architecture optimization[2]
 - Explore a bus architecture for a fixed set of functional blocks
- Bus matrix optimization
 - Bus matrix optimization by slave clustering[3]
 - Clustering slaves to find the minimum number of buses on bus matrix under Throughput Constraint Path
- •Bus matrix optimization by traffic overlap analysis[4]
- Clustering slaves and masters that do not violate traffic overlap threshold
- Cannot find multiple masters and AHB subsystem architecture
- Aim: To find the minimum area under performance constraint
- [1] Parischa et. al., Proc. 42^{nd} DAC, 2005.
- [2] Lahiri et. al., IEEE Trans. Comput.-Aided Des. Intgr Circuits System, Vol. 23, No. 6, 2004.
- [3] Parischa et. al., IEEE Trans. Comput.-Aided Des. Intgr Circuits System, Vol. 26, No. 8, 2007.
- [4] Murali et. al., IEEE Trans. Comput.-Aided Des. Intgr Circuits System, Vol. 26, No. 7, 2007.

2015/07/14

Experiment Setup (1/2)

- Objective
 - To demonstrate that the proposed method allows AMBA shared bus architecture to be explored
- Machine: 2.80 GHz intel core i7, 8GB memory, CentOS6.2
- Input
 - SLM and profiling information

Bus database

Protocol name	Bus width candidate	Frequency candidate	# of master interfaces	# of slave interfaces
АНВ	32, 64 bits	50, 100 MHz	16	Not specified
APB	16, 32 bits	30 MHz	1	Not specified

2015/07/14 MPSOC 2015 17 of 16

Experiment Setup (2/2)

●IP Database

IP	Area	Frequency	# of master	# of slave	Functional block	
name	[gate]	[MHz]	port	port	(Mapped process[cycle])	
IP ₀	3,295	50,100	0	1	BS(BS[70])	
IP ₁	19,249	100	0	1	CT(CT[1,345])	
IP ₂	18,739	100	1	0	DCT(DCT[3,617])	
IP ₃	7,713	100	0	1	ZZ(ZZ[64])	
IP ₄	10,754	50	1	0	Q(Q[1,280])	
IP ₅	47,148	100	0	1	VLC(VLC[251])	
IP ₆	24,036	100	1	0	WRT(writer[769)	

- Design constraints
 - Maximum number of bus in an architecture : 2
 - Maximum bus bridge in an architecture: 1
 - Number of buffers : 1,2
- Area estimation parameters
- 0.56 μm wire pitch, 0.18 μm CMOS library, 0.95 over-the-cell ratio

2015/07/14 MPSOC 2015 18 of 16

- Introduction
- Definition of Models: System-Level Model and Architectural Model
- Architecture Exploration Method for MPSoC

Performance Estimation Method

- Configurable Multi-layer Bus-based SoC
- Case Study
- Conclusion and Future Work

2015/07/14

Related Work: Simulation of Models Osaka Using High-level Languages

- High-level language : SpecC, SystemC
- Several abstraction level can be implemented
 - ●Cycle Accurate (CA) model [9]
 - 10-100 times faster than RTL simulation
 - Bus Cycle Accurate (BCA)
 - ●19-90 times faster than RTL simulation [10]
 - Bus Cycle Accurate at Transaction Boundaries [11]
 - Timed-model
- Approx. 20 times faster than BCA simulation [10]
- Simulation speed still slow and individual high-level abstraction model required for each architecture

[9] Loghi et. al., Proc. DATE'04, 2004.

[10] Baganne et. al., Int. Journal of Computer Simulation, Vol. 4, 1994.

[11] Pasricha et. al., ACM TECS, Vol. 7, Issue 2, feb 2008.

2015/07/14

MPSOC 2015

Related Work: Analysis of static Osaka University Model of Computation

- Worst case performance estimation
 - •Formal model used for approximating performance of AMBA shared bus and detecting deadlock [12]
 - Synchronous Data Flow (SDF) for estimating hierarchical shared bus [13]
- Statistical performance estimation
 - Stochastic timed marked graph [14]
 - ●Timed marked graph [15]
- System bus latency estimation for shared bus and multi-layer bus[16]

Fail to capture dynamic bus contention during system execution

[12] Madl et. al., Proc. 6th ACM & IEEE EMSOFT'06, oct 2006, pp. 311-320.

[13] Lee et. al., J. Signal Process. Syst., Vol. 58, No.2, pp.193-213, 2010.

[14] Li et. al., J. Signal Process. Syst., Vol. 58, No.2, pp.105-116, 2010.

[15] Liu et. al., Proc. DATE'12, pp. 641-646, 2012.

[16] Cho et.al., Proc. SLIP'06, pp.67-74, 2006.

2015/07/14

- Introduction
- Definition of Models: System-Level Model and Architectural Model
- Architecture Exploration Method for MPSoC
- Performance Estimation Method

Configurable Multi-layer Bus-based SoC

- Case Study
- Conclusion and Future Work

2015/07/14 MPSOC 2015

Definition of the Performance Osaka University Estimation Method

- Input
 - $ullet M_{sl}$: An SLM describing behavior of a system
 - $ullet M_{al}$: ALMs specifying components and mappings of an architecture
- Output
 - $ullet T_{SVS}$: Total execution time of a system described by M_{Sl} when executed on M_{al} , considering concurrent data processings and transfers

2015/07/14

- Introduction
- Definition of Models: System-Level Model and Architectural Model
- Architecture Exploration Method for MPSoC
- Performance Estimation Method
- Configurable Multi-layer Bus-based SoC

Case Study

Conclusion and Future Work

2015/07/14

MPSOC 2015

Modeling of Multi-layer AHB Osaka University Protocol

- Protocol related parameters
 - ●Address cycle: 1 cycle
 - ●Data cycle : 1 cycle(AHB)
 - ●Burst beats: 1,2,4,8,16 beats except for preemption
 - ●Split response, Retry response : 2 cycles
- Bus dynamic behavior
 - Pipeline transfer
 - Burst transfer
 - Lock transfer: for communication via bus matrix
 - Split and retry response
 - Bus preemption

2015/07/14

Discussion

- Abstraction level is between untimed- and timed-model
 - •Loosely-timed simulation takes place in system-level profiling procedure
 - •Static analysis repeatedly executed to estimate performance
- Advantage over dynamic simulation (RTL, CA, BCA)
 - Require less modeling effort
 - One SLM is implemented and its profiling information used for performance estimation of many ALMs
 - Require less time for performance estimation
 - Approximately 30-35 times faster than CA simulation
 - Require less memory resource

2015/07/14

MPSOC 2015

46

- Introduction
- Definition of Models:
 System-Level Model and Architectural Model
- Architecture Exploration Method for MPSoC
- Performance Estimation Method
- Configurable Multi-layer Bus-based SoC
- Case Study

Conclusion and Future Work

2015/07/14

MPSOC 2015

17

Conclusion and Future work

- Design space exploration method
 - Find architecture candidate via tree traversal for components and parameters
 - •Accelerate exploration by search tree pruning with upper bound and lower bound of design quality
- Efficiency of performance estimation method for multilayer bus-based SoC is fast and accurate
 - •Compared to RTL simulation : estimation error is within 8% and 25.6 times speed-up is achieved
- Future work
 - •Variable timing behavior and statistical analysis must be considered in future study

2015/07/14

MPSOC 2015

48

