PEIl: Processing-in-Memory-Enabled Instruc
tion

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu*, and Kiyoung Choi

Seoul National University *Carnegie Mellon University

Processing-in-Memory (PIM)

* Move computations to memory
— Higher memory bandwidth
— Lower memory latency
— Better energy efficiency (e.g., off-chip links vs. TSVs)

* Originally studied in 1990s
— Also known as processor-in-memory
— e.g., DIVA, EXECUBE, FlexRAM, IRAM, Active Pages, ...
— Not commercialized in the end

E Why was PIM unsuccessful in its first attempt? }

09/06/15

Challenges in PIM

Cost-effectiveness

DRAM die

Programming Model Coherence & VM

Host Processor Host Processor

Thread Thread Thread
Thread Thread Thread
Thread Thread Thread

Thread Thread Thread
Thread Thread Thread

Complex Logic In-Memory Processors DRAM die
Challenges in PIM
Cost-effectiveness Programming Model Coherence & VM

-

(Partially) Solved by
3D-Stacked DRAM

o

Still Challenging even in Recent PIM Architectures
(e.g., AC-DIMM, NDA, NDC, TOP-PIM, Tesseract, ...)

09/06/15

A New Direction of PIM

* Objectives
— Reduce the implementation overhead of PIM units
— Provide an intuitive programming model for PIM
— Full support for cache coherence and virtual memory

* Qur solution: simple PIM operations as ISA extension
— Simple: low-overhead implementation
— ISA extension: intuitive programming model

Potential of ISA Extension as the PIM Interface

* Example: Parallel PageRank (PR) computation

for (v: graph.vertices) {
for (w: v.successors) {
’ w.next_rank += weight * v.rank;
}
}
for (v: graph.vertices) {
v.rank = v.next_rank; v.next_rank = alpha;

}

09/06/15

Potential of ISA Extension as the PIM Interface

for (v: graph.vertices) {
for (w: v.successors) {
| w.next_rank += weight * v.rank;

Host Processor Main Memory

w.next_rank

64 bytes in

=
64 bytes out ‘

Conventional Architecture

Potential of ISA Extension as the PIM Interface

for (v: graph.vertices) {
for (w: v.successors) {
| PIM_add(&w.next_rank, weight * v.rank);

}
}
Host Processor Main Memory
0 byte in : i =
8 bytes out ‘

In-Memory Addition

09/06/15

Potential of ISA Extension as the PIM Interface

60%
50%]
40%

30% Increase in Memory Ban
20% | dwidth Consumption Lac

10% k of On-Chip Caches D
()

0% \—‘u%

-10%
-20%

Speedup

Reduction in Memory Bandwidt
h Consumption

[

29 o3 , 2 ¢ In-Memory Computation
o rg 2 e8] Q "9 g g =g = = w = r——
b= 92 £5 9 £ € L5 59
N2 80 8 gN £ g3 of
Q a O " © = =
More Vertices
Overview

1. How should simple PIM operations be interfaced to
conventional systems?
— Expose PIM operations as host processor instructions
— No changes to the existing sequential programming model

2. What is the most efficient way of exploiting such si
mple PIM operations?

— Dynamically determine the location of PIM execution base
d on data locality without software hints

09/06/15

PIM-Enabled Instructions

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

}
}

PIM-Enabled Instructions

for (v: graph.vertices) {
for (w: v.successors) {
’ PIM_add(&w.next_rank, weight * v.rank);
}
}

Executed either in memory or in the host processor
Cache-coherent, virtually-addressed

Atomic between different PEls
Not atomic with normal instructions (use pfence)

09/06/15

PIM-Enabled Instructions

* Single-cache-block restriction
— Each PEIl can access at most one last-level cache block
— Similar restrictions exist in atomic instructions

* Benefits
— Localization: each PEl is bounded to one memory module
— Interoperability: easier support for cache coherence and v
irtual memory

— Simplified locality monitoring: data locality of PEls can be i
dentified by LLC tag checks or similar methods

Architecture

Host Processor

1
1
—
© 1 E—
Out-Of-Order P P [S; ' DRAM Con
Core S S % o | ' PCU troller
o] 4G !
t — ~ nh st <
O a 1%} Q| o
PCU 8 o 3 DRAM Con
I ‘g T g PCU troller
PMU : o 2
PIM Direc s ' a
o
tory T|! 5
<> 1
Locality ' DRAM Con
Monitor ' L PCU troller
1
1

Proposed PEI Architecture

09/06/15

09/06/15

Memory-side PEI Execution
Host Processor i HMC
[y Jof-order ol | o 8] DRAM Con
Core S S %E ' PCU troller
l : z i - | ~
— — @ Q@ 1 5
[y pcu g HEIE (x Jcon
‘g ! g PCU troller
(SH &
MU o pirec 2l | %
o
tory | ! 5]
Locality : DRAM Con
Monitor ' L PCU troller
PIM_add(&x, y)
Address Translation for PEls ||
mgf-Order * Done by the host processor TLB (simi
ore . .
I lar to normal instructions)
[y Ppcu * No modifications to existing HW/0S
* No need for in-memory TLBs |

09/06/15

Memory-side PEI Execution

1
Host Processor . HMC
— |
[I]Of-Order 3] :
o o = ' DRAM Con
Core S S ¢ o ' PCU troller
v C
l (@] o - C : ~
3 S 7 3| S
[y Pcu S HERIE Con
*g ! g PCU troller
| =
PMU ol]l 8
PIM Direc S 2 :
- :
tory | ! 5]
. . . . 1
Wait until x is writable Locality ! DRAM Con
Monitor ' PCU troller
L 1

PIM_add(&x, y)

Reader-writer lock #0
Reader-writer lock #1

XOR-Hash Reader-writer lock #2
Address 4‘®/

(Inexact, but Conservative)

Reader-writer lock #N-1

PIM Direc
tory

Memory-side PEI Execution

1
Host Processor 1 HMC
f-Ord 3 i]
O“t'g Order | 1 o] | o = . DRAM Con
ore |
& & e I PCU troller
o o 36 1 o
S| o 3 S| =
[y Pcu S HERIE Con
‘g ! g PCU troller
1 —
PMU 8 1 =
PIM Direc s ' A
tory | ! 2
I @)
. . . . 1
Wait until x is writable Locality ! DRAM Con
Check the data locality of x Monitor ' PCU troller
1

PIM_add(&x, y)

Locality Check for Data Accessed by PEls

— 10-bit partial tags (no need to be exact)

* Updated on
— Each LLC access
— Each issue of a PIM operation to memory

* Same structure as the LLC tag array, except

Locality
Monitor

09/06/15

10

Memory-side PEI Execution

1
Host Processor . HMC
— 1
© ! I
Out-Of-Order P o [S; ' DRAM Con
Core S S % 2 ' PCU troller
(@] o - C ! ~
3| | o i s[5
[y Pcu S HERIE Con
*g ! 2 PCU troller
i =
PMU : ol |l 8
Low localit PIM Direc = : g
Y tory T|! 8
. . . . 1
Wait until x is writable Locality ! DRAM Con
Check the data locality of x Monitor ' PCU troller
1
PIM_add(&x, y)
1
Host Processor . HMC
— 1
© ! I
Out-Of-Order P P [S; ' DRAM Con
Core 5 5 % @ i PCU troller
e O o 1 x
] A o 9 S
[y Pes— ke I Con
L] T = < X+y troller
ol =
PMU : ol |l 8
Low localit PIM Direc = : g
A\ tory T|! 8
1
Locality ' DRAM Con
Monitor ' PCU troller
1

PIM_add(&x, y)

09/06/15

1

Memory-side PEI Execution

1
Host Processor . HMC
— 1
© ! I
Out-Of-Order P o [S; ' DRAM Con
Core S S ¢ o ' PCU troller
(@) (@] 35S ! ~
3| o 3 g%
EPCU 3 ol é Con
=S] i troller
§| i ET
PMU ol ! 3
PIM Direc s ! a
tory =S
. e . < 1
Completion Notification Locality ! DRAM Con
Monitor ' PCU troller
L 1
PIM_add(&x, y)
1
Host Processor . HMC
— 1
1 .
[I]Of-Order P P ' DRAM Con
Core S S g0 ' PCU troller
l (@] o 5') S : ~
3| | o % ||| s
[I]PCU S o 3 DRAM Con
*g i 2 PCU troller
PMU ol]l 8
PIM Direc s ' A
o
tory T|! 5
. . . . |
Wait until x is writable Locality ! DRAM Con
Check the data locality of x Monitor ' PCU troller
1

PIM_add(&x, y)

09/06/15

12

Host-side PEI Execution

1
Host Processor . HMC
— 1
1 [
Out-Of-Order -{L_, ' DRAM Con
Core % o ' PCU troller
] 35 o]
% 9 S
E ks 5| 2 DRAM Con
*g ! g PCU troller
PMU[S|l &
. irec 4 H
. s @ :
High locality T = i 8
Wait until x is writable Locality i DRAM Con
Check the data locality of x Monitor ' PCU troller
L 1
PIM_add(&x, y)
1
Host Processor . HMC
— 1
1 [
Out-Of-Order + _CX ‘L_, ' DRAM Con
Core S S % 2 ' PCU troller
7 12|19 7 o] x
b 3 47 Q 1 5
Ly Hoeyt” 8 HERIE:
*g ! g PCU troller
PMU S|l 5
PIM Direc ' A :
= 3 :
tory T|! 5
Completion Notification Locality i DRAM Con
Monitor ' PCU troller
1

PIM_add(&x, y)

09/06/15

13

Simulation Configuration

In-house x86-64 simulator based on Pin

16 out-of-order cores, 4GHz, 4-issue

32KB private L1 I/D-cache, 256KB private L2 cache

16MB shared 16-way L3 cache, 64B blocks

32GB main memory with 8 daisy-chained HMCs (80GB/s)

* PCU

— 1-issue computation logic, 4-entry operand buffer
— 16 host-side PCUs at 4GHz, 128 memory-side PCUs at 2GHz

PMU
— PIM directory: 2048 entries (3.25KB)
— Locality monitor: similar to LLC tag array (512KB)

Target Applications

* Ten emerging data-intensive workloads
— Large-scale graph processing

» Average teenage followers, BFS, PageRank, single-source shortest
path, weakly connected components

— In-memory data analytics

* Hash join, histogram, radix partitioning
— Machine learning and data mining

¢ Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each wor
kload to show the impact of data locality

09/06/15

14

Speedup

70%

(Large Inputs, Baseline: Host-Only)

60%
50%

40%

30%

20%

10%

0%

ATF BFS PRSP WCC HI HG RP SC SVM GM
EPIM-Only O Locality-Aware
Speedup
(Small Inputs, Baseline: Host-Only)
60%
40%

20%

0%

-20%

-40%

-60%

I

ATF

i:TTTr

BFS PR SP WCC HIJ HG
EPIM-Only O Locality-Aware

RP

SC

I

SVM GM

09/06/15

15

Speedup

(Medium Inputs, Baseline: Host-Only)

70%

60%

50%

40%

30%

20%

~A1ad10 1

10% ATF BFS PR SP WCC HIJ HG RP SC SVM GM

- 0

EPIM-Only O Locality-Aware
Sensitivity to Input Size (PR)

60% 100%
50% 90%
40% 80%
30% 70%

Q 0,

S 20% 60% X

@ 0% 50% s

g 1% 40% =
0,
0% 30%
-10% 20%
-20% 10%
-30% 0%

>
c
Q
o
o
Q

—
I3}
i
I
L

£ el ! L L Vu o L
c o = - =
89 46 60w TH 2% ., 2@ 2w
= X = NO 20 2+ k0 J4Cc -9
V,’gg: O £ N os b5 392
8o S EAN a 95 o
a © " © = =

ENPIM-Only EdLocality-Aware —=PIM %

09/06/15

16

Multiprogrammed Workloads

1,8
1,6 PIM-Only Locality-Aware
1,4
o 1,2
=}
T 1
§ 0.8 Host-Only
0,6
0,4
0,2
0
O OO0 ™~N O NS OMHOANAJO0O DTN OIN< M AN - O O 0
T ANN <N OO0 O A NN < N O 0 O
L T e R IO e TR O B e R IO o O B o |
Workload number
Energy Consumption
1,5 ———————— Host-Only
1
P TTTTTTT PIM-Only
1 . X
: . Locality-Aware
1 1
1 ;
) i
0

Small Medium Large
M Cache B HMC Link @ DRAM
[Host-side PCU OMemory-side PCU LIPMU

09/06/15

17

Conclusion

* Challenges of PIM architecture design
— Costly integration of logic and memory
— Unconventional programming models
— Lack of interoperability with caches and virtual memory

* PIM-enabled instruction
— low-cost PIM implementation
— Interfaces PIM operations as ISA extension
— Simplifies cache coherence and virtual memory support for PIM
— Locality-aware execution of PIM operations

* Evaluations
— 47%/32% speedup over Host/PIM-Only in large/small inputs

09/06/15

18

