PEI: Processing-in-Memory-Enabled Instruction

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu⁺, and Kiyoung Choi

Seoul National University

*Carnegie Mellon University

Processing-in-Memory (PIM)

- Move computations to memory
 - Higher memory bandwidth
 - Lower memory latency
 - Better energy efficiency (e.g., off-chip links vs. TSVs)
- · Originally studied in 1990s
 - Also known as processor-in-memory
 - e.g., DIVA, EXECUBE, FlexRAM, IRAM, Active Pages, ...
 - Not commercialized in the end

Why was PIM unsuccessful in its first attempt?

A New Direction of PIM

- Objectives
 - Reduce the implementation overhead of PIM units
 - Provide an intuitive programming model for PIM
 - Full support for cache coherence and virtual memory
- Our solution: simple PIM operations as ISA extension
 - Simple: low-overhead implementation
 - ISA extension: intuitive programming model

Potential of ISA Extension as the PIM Interface

• Example: Parallel PageRank (PR) computation

```
for (v: graph.vertices) {
    for (w: v.successors) {
        w.next_rank += weight * v.rank;
    }
}
for (v: graph.vertices) {
    v.rank = v.next_rank; v.next_rank = alpha;
}
```


Overview

- 1. How should simple PIM operations be interfaced to conventional systems?
 - Expose PIM operations as host processor instructions
 - No changes to the existing sequential programming model
- 2. What is the most efficient way of exploiting such si mple PIM operations?
 - Dynamically determine the location of PIM execution base d on data locality without software hints

PIM-Enabled Instructions

```
for (v: graph.vertices) {
  for (w: v.successors) {
     w.next_rank += weight * v.rank;
  }
}
```

PIM-Enabled Instructions

```
for (v: graph.vertices) {
    for (w: v.successors) {
        PIM_add(&w.next_rank, weight * v.rank);
    }
}
pfence();
```

- Executed either in memory or in the host processor
- Cache-coherent, virtually-addressed
- Atomic between different PEIs
- Not atomic with normal instructions (use pfence)

PIM-Enabled Instructions

- Single-cache-block restriction
 - Each PEI can access at most one last-level cache block
 - Similar restrictions exist in atomic instructions
- Benefits
 - Localization: each PEI is bounded to one memory module
 - Interoperability: easier support for cache coherence and v irtual memory
 - Simplified locality monitoring: data locality of PEIs can be i dentified by LLC tag checks or similar methods

Simulation Configuration

- In-house x86-64 simulator based on Pin
 - 16 out-of-order cores, 4GHz, 4-issue
 - 32KB private L1 I/D-cache, 256KB private L2 cache
 - 16MB shared 16-way L3 cache, 64B blocks
 - 32GB main memory with 8 daisy-chained HMCs (80GB/s)
- PCU
 - 1-issue computation logic, 4-entry operand buffer
 - 16 host-side PCUs at 4GHz, 128 memory-side PCUs at 2GHz
- PMU
 - PIM directory: 2048 entries (3.25KB)
 - Locality monitor: similar to LLC tag array (512KB)

Target Applications

- Ten emerging data-intensive workloads
 - Large-scale graph processing
 - Average teenage followers, BFS, PageRank, single-source shortest path, weakly connected components
 - In-memory data analytics
 - · Hash join, histogram, radix partitioning
 - Machine learning and data mining
 - Streamcluster, SVM-RFE
- Three input sets (small, medium, large) for each wor kload to show the impact of data locality

Conclusion

- Challenges of PIM architecture design
 - Costly integration of logic and memory
 - Unconventional programming models
 - Lack of interoperability with caches and virtual memory
- PIM-enabled instruction
 - low-cost PIM implementation
 - Interfaces PIM operations as ISA extension
 - Simplifies cache coherence and virtual memory support for PIM
 - Locality-aware execution of PIM operations
- Evaluations
 - 47%/32% speedup over Host/PIM-Only in large/small inputs