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Processing-in-Memory (PIM)

* Move computations to memory
— Higher memory bandwidth
— Lower memory latency
— Better energy efficiency (e.g., off-chip links vs. TSVs)

* Originally studied in 1990s
— Also known as processor-in-memory
— e.g., DIVA, EXECUBE, FlexRAM, IRAM, Active Pages, ...
— Not commercialized in the end

E Why was PIM unsuccessful in its first attempt? }
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Challenges in PIM
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(Partially) Solved by
3D-Stacked DRAM

o

Still Challenging even in Recent PIM Architectures
(e.g., AC-DIMM, NDA, NDC, TOP-PIM, Tesseract, ...)
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A New Direction of PIM

* Objectives
— Reduce the implementation overhead of PIM units
— Provide an intuitive programming model for PIM
— Full support for cache coherence and virtual memory

* Qur solution: simple PIM operations as ISA extension
— Simple: low-overhead implementation
— ISA extension: intuitive programming model

Potential of ISA Extension as the PIM Interface

* Example: Parallel PageRank (PR) computation

for (v: graph.vertices) {
for (w: v.successors) {
’ w.next_rank += weight * v.rank;
}
}
for (v: graph.vertices) {
v.rank = v.next_rank; v.next_rank = alpha;

}
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Potential of ISA Extension as the PIM Interface

for (v: graph.vertices) {
for (w: v.successors) {
| w.next_rank += weight * v.rank;

Host Processor Main Memory

w.next_rank

64 bytes in

=
64 bytes out ‘

Conventional Architecture

Potential of ISA Extension as the PIM Interface

for (v: graph.vertices) {
for (w: v.successors) {
| PIM_add(&w.next_rank, weight * v.rank);

}
}
Host Processor Main Memory
0 byte in : i =
8 bytes out ‘

In-Memory Addition
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Potential of ISA Extension as the PIM Interface
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Overview

1. How should simple PIM operations be interfaced to
conventional systems?
— Expose PIM operations as host processor instructions
— No changes to the existing sequential programming model

2. What is the most efficient way of exploiting such si
mple PIM operations?

— Dynamically determine the location of PIM execution base
d on data locality without software hints
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PIM-Enabled Instructions

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

}
}

PIM-Enabled Instructions

for (v: graph.vertices) {
for (w: v.successors) {
’ PIM_add(&w.next_rank, weight * v.rank);
}
}

Executed either in memory or in the host processor
Cache-coherent, virtually-addressed

Atomic between different PEls
Not atomic with normal instructions (use pfence)
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PIM-Enabled Instructions

* Single-cache-block restriction
— Each PEIl can access at most one last-level cache block
— Similar restrictions exist in atomic instructions

* Benefits
— Localization: each PEl is bounded to one memory module
— Interoperability: easier support for cache coherence and v
irtual memory

— Simplified locality monitoring: data locality of PEls can be i
dentified by LLC tag checks or similar methods
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Memory-side PEI Execution
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Memory-side PEI Execution
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Memory-side PEI Execution
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Locality Check for Data Accessed by PEls

— 10-bit partial tags (no need to be exact)

* Updated on
— Each LLC access
— Each issue of a PIM operation to memory

* Same structure as the LLC tag array, except

Locality
Monitor

09/06/15

10



Memory-side PEI Execution
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Memory-side PEI Execution
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Host-side PEI Execution
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Simulation Configuration

In-house x86-64 simulator based on Pin

16 out-of-order cores, 4GHz, 4-issue

32KB private L1 I/D-cache, 256KB private L2 cache

16MB shared 16-way L3 cache, 64B blocks

32GB main memory with 8 daisy-chained HMCs (80GB/s)

* PCU

— 1-issue computation logic, 4-entry operand buffer
— 16 host-side PCUs at 4GHz, 128 memory-side PCUs at 2GHz

PMU
— PIM directory: 2048 entries (3.25KB)
— Locality monitor: similar to LLC tag array (512KB)

Target Applications

* Ten emerging data-intensive workloads
— Large-scale graph processing

» Average teenage followers, BFS, PageRank, single-source shortest
path, weakly connected components

— In-memory data analytics

* Hash join, histogram, radix partitioning
— Machine learning and data mining

¢ Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each wor
kload to show the impact of data locality
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Speedup
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Speedup

(Medium Inputs, Baseline: Host-Only)
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Multiprogrammed Workloads
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Conclusion

* Challenges of PIM architecture design
— Costly integration of logic and memory
— Unconventional programming models
— Lack of interoperability with caches and virtual memory

* PIM-enabled instruction
— low-cost PIM implementation
— Interfaces PIM operations as ISA extension
— Simplifies cache coherence and virtual memory support for PIM
— Locality-aware execution of PIM operations

* Evaluations
— 47%/32% speedup over Host/PIM-Only in large/small inputs
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