

Always-on Mobile Devices

Processors for always-on processing

- Separate core for always-on processing
 - Wake-up application processor only when needed
 - Low power
 - -> 10x lower power than application processor
 - Battery in wearable needs to last weeks
 - · Multiple modes

E.g. voice activation:

- Standby / detection mode
- Recognition mode
- Mixed control and DSP
 - DSP for processing of sensor inputs

SYNOPSYS'

Processor for always-on

- Operate in different SoC contexts
- Fmax typically < 100 MHz Lowest power in each mode
- Mixed control and DSP

Processors for IoT Applications

No 'one-size-fits-all'

- Diverse functionalities → diverse requirements
 - Great variety of IoT products with different mixes of functionalities
 - Data rates and computational demands vary widely

Connectivity	Bluetooth LE Bluetooth WiFi WiFi ZigBee GPS Fors			
Security	Secure boot, authentication & authorization, encryption,			
Sensor	Motion sensing, voice activation, face detection,			
Infotainment	Audio (codecs, pre-/post-processing), voice (ITU-T),			

- Scalable
 - To offer right performance level
 - Both control and DSP
- · Lowest energy consumption
 - Low power consumption (μ W/MHz)
 - High cycle efficiency (for lowest MHz)

No 'one-size-fits-all' processor that can offer:

- Required features
- Required performance
- At lowest energy consumption for different IoT products

© 2015 Synopsys, Inc. 4

SYNOPSYS'

Processors for IoT Applications

Satisfy diverse requirements with processor IP

- · Product family
 - -Set of processors with different features and performance levels
 - IoT: too much diversity for small set of "fixed" processors
- Configurability
 - Allow tuning by (de-)configuring features for specific IoT application
 - E.g. bitstream parsing, ITU-T operations, FFT butterfly, crypto accelerators, ...
- Extensibility
 - Allow customer-specific extensions
 - New instructions in processor
 - E.g. trig-accelerator with Sin, Cos, ...

© 2015 Synopsys, Inc. 5

SYNOPSYS'

Processors for IoT Applications

Memory architecture

- · Low latency memory access
 - Closely coupled memories
 - Rather than access over interconnect
 - Fewer stall cycles and lower energy

4.301

4kB (1024x32)

32kB (8192x32)

64kB (16384x32)

- · Smaller memories with concurrent access
 - Use multiple smaller memories to reduce energy per access
 - Allow concurrent access to reduce stalls
 - X/Y memories, interleaving
 - Fewer stall cycles and lower energy
- · Fewer accesses
 - Fetch less instruction data
 - Zero-overhead loops, address generation units, implicit load/store, ...
 - Wide instruction memory to fetch multiple instructions at once
 - Fewer cycles, smaller code size and lower energy

© 2015 Synopsys, Inc. 6

SYNOPSYS"

57899

Processors for IoT Applications Multi-issue architecture C source code Multi-Non-XY ΧY q31_t foo(q31_t *b, q31_t *c) { issue $q31_t s = 0;$ Performance [MAC/cycle] 0.3 1.0 1.0 for (i = 0; i < N; i++) I-power [B/MAC] 12 s += b[i] * c[i] return s; Multi-issue assembly // Prologue SW pipelined LDD %r2, [%r0, 8] ; 64b vector load LDD %r4, [%r1, 8] ; 64b vector load LDD %r6, [%r0, 8] ; 64b vector load // 4x unrolled loop LP lpend {MAC 0, %r2, %r4; LDD %r8, [%r0, 8]} ; 32b MAC and 64b load {MAC 0, %r3, %r5; LDD %r2, [%r1, 8]} ; 32b MAC and 64b load {MAC 0, %r6, %r8; LDD %r4, [%r0, 8]} ; 32b MAC and 64b load {MAC 0, %r7, %r9; LDD %r6, [%r1, 8]} ; 32b MAC and 64b load // epilogue if loop count not multiple of 4 lpend: © 2015 Synopsys, Inc. 8 SYNOPSYS'

Conclusions

- · IoT applications pose diverse requirements
 - Different feature mixes and performance levels
 - -Lowest energy consumption
- · Configurability and extensibility are essential
 - To provide right features & performance at lowest energy
- Memory architecture is key
 - For high performance and low energy consumption
 - Must be configurable to allow area performance energy trade-offs

© 2015 Synopsys, Inc. 9

