Single Node Machine Learning
Systems - When big data meet
Moore’s Law

Wenguang CHEN
PACMAN Group

Department of Computer Science and Technology
Tsinghua University

Graph Computation

* Graph is one of the most general data structure
and has many important applications
— Twitter / Facebook / Weibo
— Amazon user-item rating matrix
— Bioinformatic / astrophysics / ..

eI

15/7/4

15/7/4

Challenges in graph computing

* Large scale o (A)
. . Weibo

— Billions vertices,
trillions of edges

* Poor locality g
— Random access on g
vertices
* Irregular topology
— Power-law distributic 10° n Sf;ee 10"

in real-world graphs

A graph example

e\ Vertex:
O
Edges:
e ’ (1,2) (1,3)
(2,1) (2,4)
° (4,2) (4,3)

For Vertex 1:
In edge: (2,1)
Out edge: (1,2) (1,3)

Current Graph Computing Systems

* Distributed systems
— Pregel, GraphLab (PowerGraph), GraphX(Spark)

— “Distributed” issues
* Fault tolerance overhead
* Load imbalance
* Slow convergence
* Unexpected performance problems

Current Graph Computing Systems

* Qut-of-core systems

— Use just one node to reduce the complexity involved in
distributed systems.

— Use SSDs/disks if the graph can not be fit into memory
* The problem is how to reduce the number of I/O operations and
the amount of /0 data
— GraphChi, X-Stream, ...
* Use preprocessing to change the memory/disk access patterns
from random accesses to sequential accesses
— Reduce number of I/O operations
* Performance compared with distributed systems
— Reasonable yet not as fast as PowerGraph/GraphX.
* Scalability
— Partially

15/7/4

X-Stream : Edge—Centric model*

for each vertex v

if v has update
for each edge e from v
scatter update along e

for each edge e
If e.src has update
scatter update along e

Vertex-Centric |:>

*Roy, Amitabha, lvo Mihailovic, and Willy Zwaenepoel. "X-stream: Edge-centric
graph processing using streaming partitions." Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. ACM, 2013.

Edge-Centric

Partition Edges and vertexs

Edgesin
disks/SSDs

* Shuffle edges with source vertex [¢ource | pest
id(instead of sorting) 1 s
* Source vertex in memory 4 7
Vi 2 7
1 4 3
: 4 8
3 3 8
2 2 4
1 3
3 2
V2 SOURCE | DEST
5 5 6
6 8 6
7 8 5
8 6 1

15/7/4

X-Stream: Edge Centric Computing
with Partitions

scatter phase:
for each streaming partition p
read in vertex set of p
for each edge e in edge list of p
edge_scatter(e): append update to Uout

shuffle phase:
for each update u in Uout
let p = partition containing target of u
append u to Uin(p)
destroy Uout

gather phase:
for each streaming partition p
read in vertex set of p
for each update u in Uin(p)
edge_gather (u)
destroy Uin(p)

1. Edge Centric Scatter

Edges (sequential read)

LA)
@r}mes (random read/write)

E ! ‘I ©oo]
Updates (sequential write)

2. Edge Centric Gather

Updates {sequential read)

APPSR |

g Vertices (random read/write)

The problems of X-Stream

e X-Stream

— Separate gather/scatter phase, with shuffle
between them, introduce many extra |/O

operations

— Poor performance for BFS and WCC-like

algorithms

* Only a small portion of edges are touched for some
iterations, but they would scan all edges

15/7/4

GridGraph

* A 2-level partitioning graph data structure
— Improve locality

— Enable more effective streaming on both edges
and vertices

e A Streaming-Apply model

— Combines the gather-apply-scatter operations
* A programming abstraction

— To enable the streaming-apply model

The Grid Representation

» 2-level hierarchical partitioning
— 1stdimension
* partition the vertices into chunks(1 2)(3,4)
* partition the edges into shards by source vertex((1,2),(2,1),(1,3),(2,4))
— 2" dimension

* partition the shards into blocks by destination vertex

(2,1) [(2,4)

(= (1L,2) [(13)
=0

(3,2) [(4,3)
9'6 (4,2)

15/7/4

15/7/4

The Streaming-Apply Model

PRd 1+ [1o RN sy iy 2 TR R 2 [o T
NewPR i 0 o | o o |i[e5es] o o | i[esa] o o | 05 2 05 05 0s 2
(L,2) |(1,3) (1,2) (1,3 (1,2) (1,3) (1,2) [(%,3) (L2 (L3)
Edge (2,1) |(2,4) (2,1) |(2,4) (2,1) (2,9 (2,1) [{2,4) (2,1) (2,4)
Blocks (3.2 |(43) (3.2) | (4,3) (3,2) |(4,3) (3.2) | (4,3) 32 [(@43)
(4,2) (4,2) (4,2) (4,2) (4,2)

Dual Sliding Windows:
¢ 1 read window + 1 write

Algorithm 1 Edge Block Streaming

window for j « 1, P do
. . fori« 1. Pdo
*» Contents of active windows if ChunklIsActive(i) then
can be fit into RAM dS.lfrcamEdgeBlock(ilj):
end 1
Each iteration, just read edge end for
list once, has opportunity to end for

skip some blocks

Streaming-Apply Processing Model

* Vertex accesses are aggregated
— Good locality

* Only 2 partitions of vertices are accessed within each
edge block

* On-the-fly updates onto vertices
— Reduces I/0

— Enables asynchronous implementation of
algorithms (like WCC, etc.) which converges faster

Evaluation

* Datasets
— Real world datasets

* Social graph: LiveJournal, Twitter

* Web graph: UK, Yahoo

Dataset V] |E| Data size
LiveJournal 4.85 million 69.0 million 527MB
Twitter 61.6 million 1.47 billion 11GB

UK 106 million 3.74 billion 28GB
Yahoo 1.41 billion 6.64 billion 50GB

* Benchmarks

— BFS, WCC, SpMV, PageRank

Performance vs. GraphChi, X-Stream

* Test environment

— 1 AWS i2.xlarge instance

* 4 (hypert.) vCPU cores

* 30.5 GB memory
— Memory limited to 8 GB

* 800GB SSD

Runtime

BFS WCC SpMV PageR.
LiveJournal
GraphChi 2205 17.28 10.12 52.08
X-Stream 6.54 14.65 6.63 18.22
GridGraph 2.11 2.53 1.96 10.54
Twitter
GraphChi 4113 439.6 2540 1225
X-Stream 4359 1199 143.9 1779
GridGraph 51.34 1903 4378 461.4
UK
GraphChi 3776 2527 407.2 3307
X-Stream 8081 12057 383.7 4374
GridGraph ~ 979.0 1264 106.3 1285
Yahoo
GraphChi 1540 13416
X-Stream - - 1076 9957
GridGraph 11935 3694 379.0 3923

15/7/4

/O Amount vs. X-Stream

450
] [X-Stream
700 - - 400
Il GridGraph
600 1 350}
3 500 5 3001
1 2 250
£ 400 1 g
5
3 3 200}
£ s00p 1 E
< 150
200]
100}
o 1.07
Input Output Input Output
(a) PageRank on Yahoo graph with 5 iterations (b) WCC on Twitter graph

* Effects of Streaming-Apply and selective scheduling
e Less I/O (especially write) not only good for
performance, but also good for life time of SSDs

/O Amount vs. X-Stream

70 = . , ;

L% % > X-Stream
eor [x—x GridGraph ||
sof ! '

@) x

2 40t Y

=

5 ' '

Q 30F M

g *

<20' § TR o X X K= K= K= K= X=X
10- i
0 . . R e e VN .

0 2 4 3 8 10 12 14 16
Iteration #

Faster convergence due to “asynchronous” label propagation
WCC on Twitter Graph

15/7/4

1200

Scalability

[8GB
1000 N 16GB
EEE 30GB

8001

600

Execution time (s)

400

200}

Edge
data
cached

Mutable

vertex

data
cached Al
vertex

cached

Twitter WCC

Yahoo PageRank

Scalability with
I/O throughput =

data |

€ Scalability with

available memory size

1600

1400H = !2.xlarge
3 i2.2xlarge
- 1200- pmm 2 4xlarge
2 1000} Il i2.8xlarge
=]
5 800f
S 600}
Q
X
“ 400}
200}
0 - -
Twitter Twitter
wcce PageRank

UK wCC UK PageRank

Performance vs. PowerGraph, GraphX

* Test environment

— PowerGraph, GraphX
* 16 AWS m2.4xlarge instances

— GridGraph
* 1 AWS i2.4xlarge instance(4 SSDs)
System Twitter WCC | Twitter PR UK WCC UK PR Cost per hr.
PowerGraph | 244 249 714 833 15.68
GraphX 251 419 647 462 15.68
GridGrpah 64 132 471 314 3.41

15/7/4

10

Discussion on Big Data Systems

Performance/
Cost

Scalability/ Programming
Fault Tolerance Model

Fault-tolerance or Performance

* MapReduce, Spark

— Use immutable data objects to help fault-
tolerance

— Poor performance, especially for BFS—like
algorithms

* GraphlLab,MPI, Pregel
— Use mutable data objects to favor performance
— Poor fault-tolerance features

15/7/4

11

15/7/4

The importance of performance

* Why fault-tolerance is important?
— Many nodes, long execution time

* With significantly improvement on performance
— A few nodes(maybe 1), shorter execution time
— Fault tolerance is no longer so important

oo 10,000
== 100,000
o e 1,000,000

TeraFLOPS

MTBF (hours)

~~~~~~

* Fabrizio Petrini and Kei Davis and José Carlos sancho. System-Level Fault-Tolerance in
Large-Scale Parallel Machines with Buffered Coscheduling. FTPDS04, 2004.

Many big data problems has its upper
bound

* Number of human beings
— 10G, the size of the social network is around 10TB

* Number of products
—~1M

* Moore’s law is driving the compute power,
memory size and |/O bandwidth keep improving

— Today 36 core, 2TB memory and 8 SSD is quite
accessible

* Today’s big data problem with bounded size will
be tomorrow’s small data problem

12



GridGraph

Performance as the first design choice instead of fault-
tolerance

10 times more cost-effective than current distributed
graph systems
A good base for future extension

— Compression to reduce 1/0 to further improve
performance

— More efficient processing for BFS-like algorithms
— Port to systems with NVM

— Distributed systems

Plan to Open source

— Welcome collaborations!

Q&A

THANKS

15/7/4

13






