



# Nanophotonics for low-latency optical integrated circuits

Akihiko Shinya NTT Basic Research Labs., Nanophotonics Center, NTT Corporation

MPSoC'17, Annecy, France

Copyright@2017 NTT corp. All Rights Reserved.

#### Outline



Low latency optical circuit
BDD-based optical circuit
Cascaded-BDD
Optical matrix multiplication

Photonic crystal technology

Small capacitance optical devices

optical gate, light source, receiver



#### Computing at light speed!



#### **Target**

Light-speed processor

- Eliminating latency bottleneck
- New optical computing technology

#### Approach

Replacement of critical path with photonic devices.

Calculation simply by propagating the light through the electrically controlled optical pass gates.

Nanophotonics for shortening the critical path





Critical path = signal route determining calculation time

Copyright@2017 NTT corp. All Rights Reserved.

2

# RC-delay in CMOS circuit





SIA, National technology roadmap for semiconductors, 1997 edition

As CMOS gets smaller,
Gate delay decreases,
Interconnect delay increases



### BDD based optical circuit



#### **BDD** (Binary Decision Diagram)



#### Merits

- (1) Instantaneous construction of output path via simultaneous gate control [ps]
- (2) Calculation simply by propagating the light through the pathway.
- (3) Calculation with light propagation speed!



Optical signal is not affected by RC!



The shorter the gate, the faster the calculation.

# Optical parallel adder

Proposed by Dr. Ishihara, Kyoto Univ.

#### Mach-Zehnder interferometer





The shorter the gate, the faster the calculation.

#### Cascaded-BDD







# Building blocks for on-chip optical circuit Serially connected gates (S $\sim 10^2$ ) Fast Multi-input logic functionality. Electrically driven No CR-limitation for propagating light. ultrashort gate Cascading of serially connected gates Reduction of cal. step from N to log<sub>s</sub>(N) Requirements - Very short optical gate - High efficiency EO/OE convertor (light source, receiver) S-input logic gate Ultralow-threshold laser

NTT



High-efficiency O/E conversion

w/o electrical amplifier

# **Photonic Crystal**





# What is photonic crystal?



### **Natural Photonic Crystal**

#### **Butterfly**



#### **Artificial Photonic Crystal**

#### Photonic crystal on Si wafer





# Analogy between Electronic and Photonic Crystal



| Electronic crystal                                                        | Photonic crystal                                                                                                       |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Ex.<br>Si                                                                 |                                                                                                                        |
| Period ~ 0.1nm = electronic wavelength                                    | Period ~ 100 nm = optical wavelength                                                                                   |
| Various electrical properties  ■ Conductor  ■ Semi conductor  ■ Insulator | <ul> <li>New optical properties</li> <li>Optical insulator</li> <li>Slow light</li> <li>Negative refraction</li> </ul> |



Copyright@2017 NTT corp. All Rights Reserved.

12

# 2D Photonic Crystal









# Why photonic crystal?



Metal mirror



Optical absorption

**Fiber** 



Leakage at bending

#### **Photonic crystal**





Light is completely confined



Large-scale photonic integration

Copyright@2017 NTT corp. All Rights Reserved.

14

# O NTT

# What can photonic crystals do?



#### **Toroid cavity**



 $V = >100(\lambda/n)^3$ Q =  $10^8$ 

#### Micro-disk



 $V = 6(\lambda/n)^3$ Q = 10<sup>3</sup> -10<sup>6</sup>

#### Micro-post



 $V = 5(\lambda/n)^3$ Q = **10**<sup>3</sup>

#### **Photonic Crystal**



 $V = 0.5-1.5 (\lambda / n)^3$ Q =  $10^5-10^6$ 

 $(\lambda/n)$ : light wavelength in cavity

# **Ultrasmall high-Q cavity**

Small footprint ( $\sim \mu m^2$ ) Strong light-matter interaction



fJ/bit & Mbit photonics



# High-efficiency light-to-voltage conversion w/o amplifier





#### Ultralow-threshold laser





O NTT

Copyright@2017 NTT corp. All Rights Reserved.

18

#### Bit Error Rate Measurement



#### w/o 50- $\Omega$ termination & optical amplifier

50



BER<10-40 Energy cost (fJ/bit) Off-chip 30 20 **BER** 10<sup>-5</sup> ~ 10<sup>-6</sup> 10 On-chip 0 50 200 250 300 0 100 150 Bias current (µA)

**✓ BER < 10**-9 @ 200&250 μA

Limited by coupling loss



## Ultra short pass/block gate



Input









Pass delay ~ 1 ps/100μm



# **Extinction vs Voltage**



20



#### **Extinction vs Voltage**



#### Ultracompact O-E-O convertor



#### Direct combination of PD and EAM

# Optical output Optical carrier Modulator

#### NTT, K. Nozaki, IPC, TuD3.1 (2015)





Copyright@2017 NTT corp. All Rights Reserved.

22

### **Summary**

(O) NTT



- Computation at light speed
- BDD-based circuits and their cascading enable very low latency calculation.
- If optical pass gate is 10 100 μm long,
   10 100 times faster than CMOS (potentially).
- ☐ Requirements for photonic device
- Short optical pass gates
- Highly effective E/O, O/E and O/E/O conversion



Nanophotonic device technology

This work was supported by CREST, JST.

