
Transaction Cache:
A Persistent Memory Acceleration Approach

Jishen Zhao
July 3, 2017

Memory Fast access to working data

Fast memory interface + persistence

Typical memory and storage hierarchy:

2

Persistent memory:

Storage Data persistence

Persistent memory is coming!

3

here!

NV-DIMM DDR3 Compatible MRAM DRAM w/ Ultra-capacitor Battery-backed DRAM 3D Xpoint

Persistent Memory
Aware Database

Persistent Memory Support Over Fabric

Persistent Memory Support in OS

Hardware –

Persistent-memory-aware system software

Nonvolatile random-access memories (NVRAMs) Not flash memory…

Software –
Persistent Memory File Systems

5

NVMM file systems are not strongly consistent

• BPFS, PMFS, Ext4-DAX, SCMFS, Aerie

• None of them provide strong metadata and data consistency

File system
Metadata

atomicity
Data

atomicity
Mmap

Atomicity [1]

BPFS
Yes

Yes [2]
No

PMFS
Yes

No
No

Ext4-DAX
Yes

No
No

SCMFS
No

No
No

Aerie
Yes

No
No

[1] Each msync() commits updates atomically.

[2] In BPFS, write times are not updated atomically with respect to the write itself.

File system
Metadata

atomicity
Data

atomicity
Mmap

Atomicity [1]

BPFS
Yes

Yes [2]
No

PMFS
Yes

No
No

Ext4-DAX
Yes

No
No

SCMFS
No

No
No

Aerie
Yes

No
No

NOVA
Yes

Yes
Yes

And copy-on-write, checkpointing, etc.

Persistent memory is coming!

•  Persistence
•  Used to be a property of storage systems
•  Now needs to be maintained in the memory system

4

here!

…but unlocking its full potential isn’t easy

Native memory, no persistence

Sy
st

em
 Th

ro
ug

hp
ut

Flash SSD
Memory, w/ persistence

Performance Gap

[Zhao +, MICRO’13]

Persistent memory (PM)	
•  The volatile/persistence boundary is moved from memory/disk to cache/memory

•  Advantages over traditional disk

•  Overall access latency is faster
•  Demonstrated 32x speedup compared with using disk1

5	

CPU

Cache	hierarchy

DRAM

NVRAM	
Controller

memory	bus

DRAM	
Controller

CPU

Cache	hierarchy

DRAM

memory	bus

DRAM	
Controller

Disk

NVRAM

Persistent memory (PM)	•  Hybrid memory (DRAM + NVRAM)
•  Can adapt to different workload requirement

•  In this work, we concern the path from cache toward NVRAM

6	

p_int a[128] = {0};
int b[128] = {0};
…
int main() {
 int *x;
 p_int *y;
 x = malloc(sizeof(int) * 256);
 y = p_malloc(sizeof(int) *
256);
 …
}	

source
code	

virtual address
space per process	

Stack

Heap

Persistent Heap
…

Persistent Data Section

Data Section

Text Section

CPU

Cache	hierarchy

DRAM

NVRAM	
Controller

memory	bus

DRAM	
Controller

NVRAM

Related work design	
•  Epoch barrier

•  Apply new software/hardware primitive (epoch barrier) to let cache controller and memory know the
ordering rule

•  Cache and memory controller follow the ordering rule in parallel with CPU execution without CPU stall

•  Problem
•  Still constrain cache eviction

and memory scheduling method

7	

CPU

Cache	hierarchy

DRAM

NVRAM	
Controller

memory	bus

DRAM	
Controller

NVRAM

Write Queue A’	
B’	LOG B’	

LOG A’	

Related work design	
•  Kiln

•  Utilize nonvolatile last level cache as backup to eliminate logging operations
•  To avoid CPU stall, cache controller will flush data toward LLC and ensure ordering in parallel with CPU

execution

8	[Kiln: closing the performance gap between systems with and without persistence support,
MICRO’13]

CPU

Cache	hierarchy

DRAM

NVRAM	
Controller

memory	bus

DRAM	
Controller

NVRAM

Last	level	cache	(Backup)

L1

L2

•  Problem
–  Need to flush data toward LLC to

ensure ordering
•  Result to more requests in cache

hierarchy
–  Maintain backup at LLC will affect

other cache lines and cause
performance degradation

•  Ex. replace a backup, have to wait for
data being written back into NVRAM
(longer replacement latency)

A’	
B’	

A	
B	

New
version	

Old version	

Related work doesn’t totally solve CPU stall
problem but just propagate overhead
toward cache hierarchy or memory
hierarchy

Transaction N
READ/WRITE

operations

In this work	
•  A new path is provided to eliminate logging overhead and free the original architecture

from ordering constraint
•  Doesn’t constrain the original architecture

•  Data writes that need data persistence flow by the new path

9	

CPU

Cache	hierarchy

DRAM

NVRAM	
Controller

memory	bus

DRAM	
Controller

NVRAM

A	new		
persistent	path

… Transaction 2
READ/WRITE

operations

Transaction 1
READ/WRITE

operations

Transaction cache design	•  Provide a new persistent path via nonvolatile hardware buffer, called transaction cache (TC)
•  With non-volatility

•  Eliminate logging operations overhead
•  Data that flows into this persistent path will naturally back up in TC

•  With buffer capability
•  Free CPU from ordering overhead

•  After issuing write toward cache hierarchy (L1 + TC), CPU can continue to execute without stall (the same as normal write)
•  Add aside of original cache hierarchy (New path)

•  Free cache and memory controller from ordering overhead
�  Original cache controller doesn’t need to handle the write ordering but drops write back request, TC will control the

write ordering
�  Data issued toward NVRAM will have backup in TC, NVRAM controller can schedule them without constraints

10	

New persistent path	

Transaction cache design – data flow	
•  Transaction cache serves as backup store to eliminate logging operations and control

the write ordering
�  Data writes from CPU will be issued toward both original cache hierarchy and TC
�  TC serves as FIFO, insert and write backs data as program order in parallel with CPU execution

•  TC write backs the data of a transaction after the transaction commits (backs up all its data into TC for atomicity)

•  Only after data written into NVRAM, backup can be invalided

11	

•  Nonvolatile eviction request from
LLC is dropped to prevent violating
consistency

①	

②	③	

Transaction cache design – data flow	
•  Transaction cache serves as backup store to eliminate logging operations and control

the write ordering
�  Data writes from CPU will be issued toward both original cache hierarchy and TC
�  TC serves as FIFO, insert and write backs data as program order in parallel with CPU execution

12	

•  TC write backs the data of a
transaction after the transaction
commits (backs up all its data into
TC for atomicity)

–  Only after data written into
NVRAM, backup can be
invalided

•  Nonvolatile eviction request from LLC is
dropped to prevent violating consistency

•  Ex. A = 10, B = 10
–  A program with a transfer

transaction from A to B + a
deposit transaction for A

Program	
Bank transfer transaction

B’	=	B	+	10

A’	=	A	-	10

CPU

Cache	
hierarchy

DRAM

NVRAM	
Controller

DRAM	
Controller

NVRAM

Software	Hardwar
e	

TC
A’ = 0	

B’ = 20	

Bank deposit transaction
A’’	=	A’	+	100

A’’ = 100	A’’ = 100	

A’ = 0	

Recover
from TC
B’ 	

Dropped
Writes

A = 10	 B = 10	

B’ = 20	B’ = 20	

Crash	

A’ = 0	

Transaction cache design – serve read	
•  Because nonvolatile eviction request from LLC is dropped

•  Miss request on these dropped data cannot be served from NVRAM if data are still in TC and not written
back

•  To serve the request, nonvolatile miss request from LLC will be issued toward both NVRAM and TC

•  Use data from TC first

13	

Program	
Bank transfer transaction

B’	=	B	+	10

A’	=	A	-	10

CPU

Cache	

hierarchy

DRAM

NVRAM	
Controller

DRAM	
Controller

NVRAM

Software	Hardwar
e	

TC A’ = 0	
B’ = 20	

Bank deposit transaction
A’’	=	A’	+	100

B’ = 20	
A’ = 0	A’ = 0	

Dropped
Writes

A = 10	 B = 10	

TX_BEGIN
 mov r1, [A] //load from A
 sub r1, 10
 mov [A], r1 //store to A
 mov r1, [B]
 add r1, 10
 mov [B], r1
TX_END

Transaction {
 A=A-10
 B=B+10 } Compiling

Software
Hardware

TC software/hardware modification	

14	

With eliminated
logging operations
and hardware
ensured ordering,
software provide
transaction
boundary

Compiler will transform
them into CPU
primitives
•  TX_BEGIN
•  TX_END Each CPU has

•  Transaction ID/mode(TxID/Mode)
registers

•  Normal mode vs Transaction
mode

•  Next transaction ID(Next TxID)

❶ Write request
TxID Address Data

1 ❷ Commit request
TxID

1

Transaction request
queue
•  Buffer the request from

LLC or CPU

❸ Miss request
Address
0xCCCC

Transaction cache controller
•  Insert & evict data as FIFO

•  Insert with active state
•  After committing, set to

committed state and
evict

•  Serve miss request as
CAM

Last level cache(LLC)
•  Issue miss request toward NVRAM

and TC
•  Simply drop the nonvolatile eviction

requests, which has persistent flag
= 1 Memory controller

•  send back a
acknowledgement request
toward TC

•  To let TC know data is
written back

acknowledgement
request

Address
0xAAAA

Performance results (IPC & Throughput)	
•  IPC: instructions/cycle, Throughput: transaction/sec
•  SP

•  Achieves 47.7%, 31.6% performance of optimal by IPC and throughput

•  TC
•  Achieves 98.4% performance of optimal, in average

•  Kiln
•  Achieves only 87.8% performance of optimal, in average

15	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	

graph	 rbtree	 sps	 btree	 hashtable	 geomean	

N
or
m
al
iz
ed

	IP
C

SP	 TC	 Kiln	 opMmal	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	

graph	 rbtree	 sps	 btree	 hashtable	 geomean	N
or
m
al
iz
ed

	T
hr
ou

gh
pu

t

SP	 TC	 Kiln	 opMmal	

47.7%	
31.6%	

98.4%	
87.8%	

0	
0.5	
1	

1.5	
2	

2.5	
3	

graph	 rbtree	 sps	 btree	 hashtable	geomean	

N
or
m
al
iz
ed

	N
VR

AM
	R
ea
d	

La
te
nc
y

TC	 Kiln	 opMmal	

The degradation reason of TC	•  More write traffic is generated to ensure persistence in NVRAM
•  In average, TC has 9.75x write traffic of optimal

16	

0	

10	

20	

30	

40	

50	

graph	 rbtree	 sps	 btree	 hashtable	 geomean	

N
or
m
al
iz
ed

	W
rit
e	
Tr
affi

cs
	

SP	 TC	 Kiln	 opMmal	

9.75x	

0.9	
1	

1.1	
1.2	

N
or
m
al
iz
ed

	
N
VR

AM
	L
oa

d	
La
te
nc
y

TC	 opMmal	

•  More write traffic results to longer
NVRAM read latency and thus
load latency. (read request toward
NVRAM, load request from CPU)
–  In average, TC has 48.3% longer

NVRAM read and 4.8% longer
load latency compared to
optimal.

4.8%	

48.3%	

The degradation reason of TC	
•  SP has 19.75x write traffic of optimal for persistence, logging
•  Kiln has 8.5x write traffic of optimal for persistence

•  Compared to Kiln, TC has 14.8% more write traffic.
•  Because Kiln utilize nonvolatile LLC as backup, transaction data will buffer in LLC

•  TC has 48.3% longer read latency than optimal
•  Kiln has 21.7% longer read latency than optimal
•  Because write intensity, sps has much longer read degradation than others

17	

0	
0.5	
1	

1.5	
2	

2.5	
3	

graph	 rbtree	 sps	 btree	 hashtable	geomean	

N
or
m
al
iz
ed

	N
VR

AM
	R
ea
d	

La
te
nc
y

TC	 Kiln	 opMmal	

0	

10	

20	

30	

40	

50	

graph	 rbtree	 sps	 btree	 hashtable	 geomean	

N
or
m
al
iz
ed

	W
rit
e	
Tr
affi

cs
	

SP	 TC	 Kiln	 opMmal	

8.5x	

19.75x	
9.75x	

48.3%	
21.7%	

176.9% 	

99% 	

Conclusion	
•  To solve persistence overhead, method applied by related work is to propagate

persistence overhead toward cache and memory hierarchy

•  In this work, an efficient hardware mechanism is proposed to provide a new persistent
path
•  Utilize additional nonvolatile hardware to eliminate extra backup operations.

•  Free the original hardware architecture from ensuring the write ordering

•  Experimental results show that our efficient hardware mechanism achieve the close
performance of the optimal case without data persistent guarantee (98.4%).	

18	

