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Typical memory and storage hierarchy:

Storage Data persistence
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. .. herel
Persistent memory Is comingl—-

..but unlocking its full potential isn't easy

Py
. Dry it with “Logs>”

And copy-on-write, checkpointing, etc.

e Persistence Natiye memory, no persistence
* Used to be a property of storage systems
*  Now needs to be maintained in the memory system
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Persistent memory (PM)

* The volatile/persistence boundary is moved from memory/disk to cache/memory

* Advantages over traditional disk

* Overall access latency is faster
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* (anadapt to different workload requirement
*In this work, we concern the path from cache toward NVRAM
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Related work design

* Epoch barrier
« Apply new software/hardware primitive (epoch barrier) to let cache controller and memory know the

ordering rule
Cache and memory controller follow the ordering rule in parallel with CPU execution without CPU stall
* Problem CPU

« Still constrain cache eviction
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Related work design
* Kiln

* Utilize nonvolatile last level cache as backup to eliminate logging operations
» Toavoid CPU stall, cache controller will flush data toward LLC and ensure ordering in parallel with CPU

* Prolskeatin =0
— Need to flush data toward LLC to , ;
ensure Orderlng Cache hlerarchy L1
» Result to more requests in cache L2
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In this work

* Anew pathis provided to eliminate logging overhead and free the original architecture
from ordering constraint
« Doesn't constrain the original architecture

Data writes that need data persisten[e frovc oy thEewpath
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. J&ﬁﬁ'@%ﬁ%&@@h%ﬂﬁﬁigﬂwmatne hardware buffer, called transaction cache (TC)

* With non-volatility

Eliminate logging operations overhead
» Data that flows into this persistent path will naturally back up in TC

* With buffer capability

Free CPU from ordering overhead
« Afterissuing write toward cache hierarchy (L1 + TC), CPU can continue to execute without stall (the same as normal write)

« Add aside of original cache hierarchy (New path)
Free cache and memory controller from ordering overhead

@  Original cache controller doesn’t need to handle the write ordering but drops write back request, TC will control the
write ordering

Transaction {
LOG_A=log(&A, 0)
LOG_B=log(&B, 1)
sfence
clflushopt &LOG_A
clflushopt &LOG_B
sfence
pcommit
sfence

write A=0
write B=1 —>

Transaction {
write A=0
write B=1

}

@  Dataissued toward NVRAM will have backup in TC, NVRAM controller can schedule them w‘ithout constraints
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Transaction cache design - data flow

* Transaction cache serves as backup store to eliminate logging operations and control
the write ordering

@  Data writes from CPU will be issued toward both original cache hierarchy and TC

@ TCserves as FIFO, insert and write backs data as program order in parallel with CPU execution
TC write backs the data of a transaction after the transaction commits (backs up all its data into TC for atomicity)

Only after data written into NVRAM, backup can be invalided

* Nonvolatile eviction request from
LLC is dropped to prevent violating

consistency
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Transaction cache design - data flow

» Transaction cache serves as backup store to eliminate logging operations and control

the write ordering

@  Data writes from CPU will be issued toward both original cache hierarchy and TC
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 TC write backs the data of a
transaction after the transaction
commits (backs up all its data into
TC for atomicity)

— Only after data written into
NVRAM, backup can be
invalided

* Nonvolatile eviction request from LLC is
dropped to prevent violating consistency

- EX.A=10,B=10

— A program with a transfer
transaction fromAtoB + a
deposit transaction for A
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Transaction cache design - serve read

* Because nonvolatile eviction request from LLC is dropped
* Miss request on these dropped data cannot be served from NVRAM if data are still in TC and not written
back

To serve the request, nonvolatile miss request from
* Use data from T( first
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TC software/hardware modificatio
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Performance results (IPC & Throughput)

* IPC: instructions/cycle, Throughput: transaction/sec
- 5P

* Achieves 47.7%, 31.6% performance of optimal by IPC and throughput
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The degradation reason of TC

» SP has 19.75x write traffic of optimal for persistence, logging
* Kiln has 8.5x write traffic of optimal for persistence

* (ompared to Kiln, TC has 14.8% more write traffic.
* Because Kiln utilize nonvolatile LLC as backup, transaction data will buffer in LLC
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Conclusion

* To solve persistence overhead, method applied by related work is to propagate
persistence overhead toward cache and memory hierarchy

* In this work, an efficient hardware mechanism is proposed to provide a new persistent
path

* Utilize additional nonvolatile hardware to eliminate extra backup operations.
* Free the original hardware architecture from ensuring the write ordering

* Experimental results show that our efficient hardware mechanism achieve the close
performance of the optimal case without data persistent guarantee (98.4%).
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