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Memory  Fast access to working data 

Fast memory interface + persistence 

Typical memory and storage hierarchy: 

2 

Persistent memory: 

Storage Data persistence 



Persistent memory is coming! 
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here! 

NV-DIMM DDR3 Compatible MRAM DRAM w/ Ultra-capacitor Battery-backed DRAM 3D Xpoint 

Persistent Memory 
Aware Database 

Persistent Memory Support Over Fabric 

Persistent Memory Support in OS 

Hardware –  

Persistent-memory-aware system software 

Nonvolatile random-access memories (NVRAMs) Not flash memory… 

Software –  
Persistent Memory File Systems 

5

NVMM file systems are not strongly consistent 

• BPFS, PMFS, Ext4-DAX, SCMFS, Aerie 

• None of them provide strong metadata and data consistency
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[1] Each msync() commits updates atomically.

[2] In BPFS, write times are not updated atomically with respect to the write itself.
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And copy-on-write, checkpointing, etc. 

Persistent memory is coming! 

•  Persistence 
•  Used to be a property of storage systems 
•  Now needs to be maintained in the memory system  
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here! 

…but unlocking its full potential isn’t easy 

Native memory, no persistence 
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Flash SSD 
Memory,  w/ persistence 

Performance Gap 

[Zhao +, MICRO’13] 



Persistent memory (PM)	
•  The volatile/persistence boundary is moved from memory/disk to cache/memory 

•  Advantages over traditional disk 

•  Overall access latency is faster 
•  Demonstrated 32x speedup compared with using disk1 

 

5	

CPU


Cache	hierarchy


DRAM


NVRAM	
Controller


memory	bus


DRAM	
Controller


CPU


Cache	hierarchy


DRAM

memory	bus


DRAM	
Controller


Disk


NVRAM




Persistent memory (PM)	•  Hybrid memory (DRAM + NVRAM) 
•  Can adapt to different workload requirement 

•  In this work, we concern the path from cache toward NVRAM 

6	

p_int a[128] = {0}; 
int b[128] = {0}; 
… 
int main() { 
 int *x; 
 p_int *y; 
 x = malloc(sizeof(int) * 256); 
 y = p_malloc(sizeof(int) * 
256); 
 … 
}	

source 
code	

virtual address  
space per process	

Stack 

Heap 

Persistent Heap 
… 

Persistent Data Section 

Data Section 

Text Section 
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Related work design	
•  Epoch barrier 

•  Apply new software/hardware primitive (epoch barrier) to let cache controller and memory know the 
ordering rule 

•  Cache and memory controller follow the ordering rule in parallel with CPU execution without CPU stall 

•  Problem 
•  Still constrain cache eviction 

and memory scheduling method 
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Related work design	
•  Kiln 

•  Utilize nonvolatile last level cache as backup to eliminate logging operations 
•  To avoid CPU stall, cache controller will flush data toward LLC and ensure ordering in parallel with CPU 

execution 

8	[Kiln: closing the performance gap between systems with and without persistence support, 
MICRO’13]


CPU
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Last	level	cache	(Backup)


L1

L2


•  Problem 
–  Need to flush data toward LLC to 

ensure ordering 
•  Result to more requests in cache 

hierarchy 
–  Maintain backup at LLC will  affect 

other cache lines and cause 
performance degradation 

•  Ex. replace a backup, have to wait for 
data being written back into NVRAM 
(longer replacement latency) 

A’	
B’	

A	
B	

New 
version	

Old version	

Related work doesn’t totally solve CPU stall 
problem but just propagate overhead 
toward cache hierarchy or memory 
hierarchy 



Transaction N 
READ/WRITE 

operations  
 

In this work	
•  A new path is provided to eliminate logging overhead and free the original architecture 

from ordering constraint 
•  Doesn’t constrain the original architecture  

•  Data writes that need data persistence flow by the new path 
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Transaction cache design	•  Provide a new persistent path via nonvolatile hardware buffer, called transaction cache (TC) 
•  With non-volatility 

•  Eliminate logging operations overhead 
•  Data that flows into this persistent path will naturally back up in TC 

•  With buffer capability 
•  Free CPU from ordering overhead 

•  After issuing write toward cache hierarchy (L1 + TC), CPU can continue to execute without stall (the same as normal write) 
•  Add aside of original cache hierarchy (New path) 

•  Free cache and memory controller from ordering overhead 
�  Original cache controller doesn’t need to handle the write ordering but drops write back request, TC will control the 

write ordering 
�  Data issued toward NVRAM will have backup in TC, NVRAM controller can schedule them without constraints 
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New persistent path	



Transaction cache design – data flow	
•  Transaction cache serves as backup store to eliminate logging operations and control 

the write ordering 
�  Data writes from CPU will be issued toward both original cache hierarchy and TC 
�  TC serves as FIFO, insert and write backs data as program order in parallel with CPU execution 

•  TC write backs the data of a transaction after the transaction commits (backs up all its data into TC for atomicity) 

•  Only after data written into NVRAM, backup can be invalided 
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•  Nonvolatile eviction request from 
LLC is dropped to prevent violating 
consistency 

 

①	

②	③	



Transaction cache design – data flow	
•  Transaction cache serves as backup store to eliminate logging operations and control 

the write ordering 
�  Data writes from CPU will be issued toward both original cache hierarchy and TC 
�  TC serves as FIFO, insert and write backs data as program order in parallel with CPU execution 
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•  TC write backs the data of a 
transaction after the transaction 
commits (backs up all its data into 
TC for atomicity) 

–  Only after data written into 
NVRAM, backup can be 
invalided 

•  Nonvolatile eviction request from LLC is 
dropped to prevent violating consistency 

•  Ex. A = 10, B = 10 
–  A program with a transfer 

transaction from A to B + a 
deposit transaction for A 

Program	
Bank transfer transaction  

B’	=	B	+	10

A’	=	A	-	10
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Controller
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e	

TC 
A’ = 0	

B’ = 20	

Bank deposit transaction  
A’’	=	A’	+	100


A’’ = 100	A’’ = 100	

A’ = 0	

Recover  
from TC 
B’ 	

Dropped  
Writes 

A = 10	 B = 10	

B’ = 20	B’ = 20	

Crash	

A’ = 0	



Transaction cache design – serve read	
•  Because nonvolatile eviction request from LLC is dropped 

•  Miss request on these dropped data cannot be served from NVRAM if data are still in TC and not written 
back 

•  To serve the request, nonvolatile miss request from LLC will be issued toward both NVRAM and TC 

•  Use data from TC first 
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Program	
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TX_BEGIN 
          mov r1, [A] //load from A 
          sub r1, 10 
          mov [A], r1 //store to A 
          mov r1, [B] 
          add r1, 10 
          mov [B], r1 
TX_END 

Transaction { 
                  A=A-10 
                  B=B+10 } Compiling 

Software 
Hardware 

TC software/hardware modification	
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With eliminated 
logging operations 
and hardware 
ensured ordering, 
software provide 
transaction 
boundary 

Compiler will transform 
them into CPU 
primitives 
•  TX_BEGIN 
•  TX_END Each CPU has 

•  Transaction ID/mode(TxID/Mode) 
registers 

•  Normal mode vs Transaction 
mode  

•  Next transaction ID(Next TxID)  

❶ Write request 
TxID Address Data 

1 ❷ Commit request 
TxID 

1 

Transaction request 
queue 
•  Buffer the request from 

LLC or CPU 

❸ Miss request 
Address 
0xCCCC 

Transaction cache controller 
•  Insert & evict data as FIFO 

•  Insert with active state 
•  After committing, set to 

committed state and 
evict 

•  Serve miss request as 
CAM 

Last level cache(LLC)  
•  Issue miss request toward NVRAM 

and TC 
•  Simply drop the nonvolatile eviction 

requests, which has persistent flag 
= 1 Memory controller 

•  send back a 
acknowledgement request 
toward TC 

•  To let TC know data is 
written back 

acknowledgement 
request  

Address 
0xAAAA 



Performance results (IPC & Throughput)	
•  IPC: instructions/cycle, Throughput: transaction/sec 
•  SP  

•  Achieves 47.7%, 31.6% performance of optimal by IPC and throughput 

•  TC  
•  Achieves 98.4% performance of optimal, in average 

•  Kiln  
•  Achieves only 87.8% performance of optimal, in average 
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The degradation reason of TC	•  More write traffic is generated to ensure persistence in NVRAM 
•  In average, TC has 9.75x write traffic of optimal 
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•  More write traffic results to longer 
NVRAM read latency and thus 
load latency. (read request toward 
NVRAM, load request from CPU) 
–  In average, TC has 48.3% longer 

NVRAM read and 4.8% longer 
load latency compared to 
optimal. 

4.8%	

48.3%	



The degradation reason of TC	
•  SP has 19.75x write traffic of optimal for persistence, logging 
•  Kiln has 8.5x write traffic of optimal for persistence  

•  Compared to Kiln, TC has 14.8% more write traffic. 
•  Because Kiln utilize nonvolatile LLC as backup, transaction data will buffer in LLC 

•  TC has 48.3% longer read latency than optimal 
•  Kiln has 21.7% longer read latency than optimal 
•  Because write intensity, sps has much longer read degradation than others 
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Conclusion	
•  To solve persistence overhead, method applied by related work is to propagate 

persistence overhead toward cache and memory hierarchy 

•  In this work, an efficient hardware mechanism is proposed to provide a new persistent 
path 
•  Utilize additional nonvolatile hardware to eliminate extra backup operations. 

•  Free the original hardware architecture from ensuring the write ordering 

•  Experimental results show that our efficient hardware mechanism achieve the close 
performance of the optimal case without data persistent guarantee (98.4%).	

18	


