Transaction Cache:
A Persistent Memory Acceleration Approach

Jishen Zhao
July 3, 2017

Typical memory and storage hierarchy:

Storage Data persistence

herel
Persistent memory is-€eming!— e

Hardware - Nonvolatile random-access memories (NVRAMs)
Battery-backed DRAM NV DIMM - 3D Xomt DDR3 Coati o MRAM

DRAM w/ Ultra-capacitor

Software - Persistent-memory-aware system software

Persistent Memo%m"e
Metadata atomici Atom|c|ty
Using DAXPgr§\ll§t§gt Memory Support in 05 @ romicity
DAX Volume Creatlon .- o

No
Yes Yes (2] o
S R NVM.PM.FILE ACTIONS B Yes Ro No
3 rormae e o o iR o e
D Vol T o . .mp, e Ext4-DAX Yes No No
AX olume ldentlflc _Microsoft “on
ToEae = o redhat scmrs — No e
> check Tpri1ome, :Oma O(C\ =) 'pOt @ — ©
SystemFlags for FrL DALVO LUME (0x20000000 - o “r: ed. : : nd_ve -T el Yes -
e —
If HANA 1
s Pemsteanf—mU"Y— [Persi
HANA 2 backup... 'Stent Memo
Wt e MR R Aware Database ; ry Support Over Fabric

CS/b PELOTON

ARNEGIE MELLON
$==2 GATABASE GROUP

. .. herel
Persistent memory Is comingl—-

..but unlocking its full potential isn't easy

Py
. Dry it with “Logs>”

And copy-on-write, checkpointing, etc.

e Persistence Natiye memory, no persistence
* Used to be a property of storage systems
* Now needs to be maintained in the memory system

System Throughp

[Zhao +, MICRO'13]

Persistent memory (PM)

* The volatile/persistence boundary is moved from memory/disk to cache/memory

* Advantages over traditional disk

* Overall access latency is faster

CPU

|

DRAM

Caontroller
me

mory bus

Y

CPU

DRAM NVRAM

Controller Caontroller

orlsten RPN
° memor
* (anadapt to different workload requirement
*In this work, we concern the path from cache toward NVRAM

source ,

int gid = {0}; !
it b[&éﬂﬁ}{; } : St‘;ck CPU
e 5 | cocheierareny |
int *x;
p_int*y; | ;
x = malloc(sizeof(int) * 256) DRAM NVRAM
y = p_malloc(sizeof(int) * ' =
256); ! Controller Cantroller
! memory bus
}

Text Section

Related work design

* Epoch barrier
« Apply new software/hardware primitive (epoch barrier) to let cache controller and memory know the

ordering rule
Cache and memory controller follow the ordering rule in parallel with CPU execution without CPU stall
* Problem CPU

« Still constrain cache eviction

Cache hierarchy
and memory scheduling method DRAM =LO'WH
Cantroller SN _

‘ memory bus ‘

Related work design
* Kiln

* Utilize nonvolatile last level cache as backup to eliminate logging operations
» Toavoid CPU stall, cache controller will flush data toward LLC and ensure ordering in parallel with CPU

* Prolskeatin =0
— Need to flush data toward LLC to , ;
ensure Orderlng Cache hlerarchy L1
» Result to more requests in cache L2
hierarchy P
— Nla”]la”] ha‘;k“n al LL£2 yw” a”eS;I e i |)E.AI\/| | | I\I\IB.AI\/I |
propagate overhead .

toward cache hierarchy memory .

IKil hierarchv

In this work

* Anew pathis provided to eliminate logging overhead and free the original architecture
from ordering constraint
« Doesn't constrain the original architecture

Data writes that need data persisten[e frovc oy thEewpath

ction 2
Transaction 1

CPU

DRAM NVRAM ‘ path

Controller Controller
memory bus

. J&ﬁﬁ'@%ﬁ%&@@h%ﬂﬁﬁigﬂwmatne hardware buffer, called transaction cache (TC)

* With non-volatility

Eliminate logging operations overhead
» Data that flows into this persistent path will naturally back up in TC

* With buffer capability

Free CPU from ordering overhead
« Afterissuing write toward cache hierarchy (L1 + TC), CPU can continue to execute without stall (the same as normal write)

« Add aside of original cache hierarchy (New path)
Free cache and memory controller from ordering overhead

@ Original cache controller doesn’t need to handle the write ordering but drops write back request, TC will control the
write ordering

Transaction {
LOG_A=log(&A, 0)
LOG_B=log(&B, 1)
sfence
clflushopt &LOG_A
clflushopt &LOG_B
sfence
pcommit
sfence

write A=0
write B=1 —>

Transaction {
write A=0
write B=1

}

@ Dataissued toward NVRAM will have backup in TC, NVRAM controller can schedule them w‘ithout constraints

CPU

Write/Commit request

Dropped writes |

|

10

Transaction cache design - data flow

* Transaction cache serves as backup store to eliminate logging operations and control
the write ordering

@ Data writes from CPU will be issued toward both original cache hierarchy and TC

@ TCserves as FIFO, insert and write backs data as program order in parallel with CPU execution
TC write backs the data of a transaction after the transaction commits (backs up all its data into TC for atomicity)

Only after data written into NVRAM, backup can be invalided

* Nonvolatile eviction request from
LLC is dropped to prevent violating

consistency

‘LWrite/Com mit request

Dropped writes |

CPU
l, |
L1 TC
L2 1
LLC
J LLC miss

NVRAM | TC-controlled
ACK write ordering

A 4

NVRAM controller

NVRAM

11

Transaction cache design - data flow

» Transaction cache serves as backup store to eliminate logging operations and control

the write ordering

@ Data writes from CPU will be issued toward both original cache hierarchy and TC

/:)\ Tr ''''''''' EIEn :ﬂ'ﬂ'* ﬂnA lll':"n LQ’LP Aﬂ;ﬂ -~
» pra

 TC write backs the data of a
transaction after the transaction
commits (backs up all its data into
TC for atomicity)

— Only after data written into
NVRAM, backup can be
invalided

* Nonvolatile eviction request from LLC is
dropped to prevent violating consistency

- EX.A=10,B=10

— A program with a transfer
transaction fromAtoB + a
deposit transaction for A

Pranocram

lerarchy

" DRAM

Controller

Recover

from TC
’ 12

Transaction cache design - serve read

* Because nonvolatile eviction request from LLC is dropped
* Miss request on these dropped data cannot be served from NVRAM if data are still in TC and not written
back

To serve the request, nonvolatile miss request from
* Use data from T(first

| CPU |

Prnoram

dlll UCK d a
In 1 ¢Write/Commit request
ot | | TC | e e
AN A e
NVRAM | TC-controlled
LLC ACK write ordering

D d it
ropped writes I I MI

‘ NVRAM controller) ‘
I

| NVRAM |

13

TC software/hardware modificatio

With eliminated 4
logging operations % '
ale pller

and hardware
§£‘W n --Hh i _ B U

ensured ordering
Issue miss request toward NVRAI\/I
and TC

O Write request ‘
TxID)_Address 1 Data

1 ® Commit request

y mit request
»

TxID - -

Bller

Tx Cache Data Array

al

=

0]

* Simply drop the nonvolatile eviction [h ‘!E‘ﬂ."l < | FoEmeaaoo
requests which has persistent flag SN
= L2 Cache Dat Ory COfrirum zsaction | TransacRQn cache controller
PV e[|+ send back a Insert &\evict data as FIFO
acknowledgement request * Insqlt[” acknowledgement
L2 Cache Datq toward TC o Aft request
P/V | Ta et a Tx Add
: « To let TC know datari: nes moand: .
— writtenbgy g~ | es N
Dropped writes Normal
- - AU G\ 4

TX_END:
toc

ser BN r
otify t@AcMnéeh&
mit a ion

Avai

lable

Receive ACK
from NVRANM

14

Performance results (IPC & Throughput)

* IPC: instructions/cycle, Throughput: transaction/sec
- 5P

* Achieves 47.7%, 31.6% performance of optimal by IPC and throughput
* T(

e Acbiniine NO A0/ ancflnconanca af aalicnal (n ayinceacsca
BESp ETC OKiln BHoptimal BESp ETC OKiln BHoptimal
1'2 98-4% L d 1'2
4 2
g 1 2 1
T 0.8 3 0.8
N o
= 0.6 < 0.6
(=
g 0.4 T 04 1
Z 02 = 0.2
0 € o
graph rbtree sps btree hashtable geomean 2 graph rbtree sps btree hashtable geomean

19

The de

* More wr

* In ave.ra%/I

NVRAM read latency and thus
load latency. (read request toward

P

ore wri

||cO|Is] ggr?esrg e t 0 ensure persistence in NVRAM

e TChas 9. Z?X write fraffic of o timal
e traffic resu ts to longer

ETC Eoptimal

1.2 *. :
NVRAM, load request from CPU) (8:'1 Py mm mm mm B Bm
®s S 0.9
— In average, TC has 48.3% longer £ 3 % S ¢ £ & & &
NVRAM read and 4.8% longer | =2 ¢ © < ¢ ¢
msp l(?@gll?tﬁ ¥a|compared to BTC OKiln Hoptimal
optimal.
4 >0 p o 3
"Eu 40 E 2.5
- s 2 o/
g S 51s 48.3%
= 20 25 1
g X | 8305
g0 g 0
g graph rbtree sps btree hashtable geomean ’25 graph rbtree sps btree hashtable geomean

16

The degradation reason of TC

» SP has 19.75x write traffic of optimal for persistence, logging
* Kiln has 8.5x write traffic of optimal for persistence

* (ompared to Kiln, TC has 14.8% more write traffic.
* Because Kiln utilize nonvolatile LLC as backup, transaction data will buffer in LLC

Tr I‘\"'I(‘ AQ ',0/ |nnrrnr f'l'l"\l‘l I‘\‘l‘ﬂﬂf\l +I‘|"'Il‘| nn+;m-\|

Normalized Write Traffics

ESP ETC OKiln EHoptimal ETC OKiln Eoptimal
176.9%
< ’ A)
1975 z ... 48.3%
) & > 2 7%
20 1
. I '_g 0
graph rbtree sps btree hashtable geomean g graph rbtree sps btree hashtable geomean

17

Conclusion

* To solve persistence overhead, method applied by related work is to propagate
persistence overhead toward cache and memory hierarchy

* In this work, an efficient hardware mechanism is proposed to provide a new persistent
path

* Utilize additional nonvolatile hardware to eliminate extra backup operations.
* Free the original hardware architecture from ensuring the write ordering

* Experimental results show that our efficient hardware mechanism achieve the close
performance of the optimal case without data persistent guarantee (98.4%).

18

