An Architecture Design for Integrated Traffic Control System Koichiro Yamashita Fujitsu Laboratories LTD. IoT System Laboratories ## Background - Sensing device of automotive and advanced intelligence is progressing. - On the other hand, management system of the road itself is considered. - Aging problem (30~50 years after construction) 40% of road infrastructure (bridge, tunnel, slope…) of freeway - Disaster problem 70,000 areas (freeway), 1,050,000 areas (other local roads) must be monitored continuously - * Only in Japan | | Profile | | | |------------------|------------|-------------------|--| | | Length[km] | Monitoring target | | | Freeway | 10,000 | 70,000 areas* | | | National highway | 54,000 | 1,050,000 areas** | | | Prefectural road | 129,000 | 1,050,000 areas | | | Others | 1,000,000 | | | Drofile Along with the evolution of automobiles, remote monitoring of road infrastructure has been integrating as an advanced IoT system ^{*} Fujitsu and partners examined ^{**}Ministry of Land, Infrastructure and Transport, Japan 2007 ## Intelligent Transport System ■ Navigation System ,VICS, ETC: 2001~ ■ Safety Driving:2006~ ■ AHS(Advanced Highway System):2011~ ■ DSSS(Driving Safety Support System):2006~ ■ ASV(Advanced Safety Vehicle):2011~ UTMS(Universal Traffic Control System):2006~ AMIS(Advanced Mobile Information System) ■ ITCS(Integrated Traffic Control System) ## Conditions and Challenges - Huge data collection, sustainability and robustness - Problems: - The bottleneck of the system is not disclosed - It doesn't work properly with a simple implementation - Proposal: - Dynamic vertical migration control for distributed processing between gateway (edge) and cloud. - Fluctuation in wireless communication and power model due to the environmental disturbance - Problems: - The deployment environment is severe - No power supply, no wired network line - Proposal: - 1. Power scheduling method considering solar-power generation variation via weather and temperature (MPSoC2015,2016) - 2. Wireless node deployment simulation: - transmission rate becomes symmetric under the environment of varying signal strength ## Dynamic vertical migration control ## ■ Which is better? ✓ About 1,000,000 data/site/year are collected #### Specified protocol of RF # Specified protocol of RF # Trade-off | | Cloud centralized | Gateway (Edge) centralized | |--------------|---|--| | Advantage | Real time performance of all global data analysis (Comprehensive observation and analysis of all data) Miniaturization of gateway architecture (GW only relays data) | Data flow between cloud server (compressed and arranged DB data) Robustness against backbone network (local DB becomes backup when backbone network is disconnected) Real time performance for sensor device control | | Disadvantage | Real time performance for sensor device control Robustness against backbone network (data loss during failure of base station of cellular network) | Real time performance of all global data analysis (It's necessary to judge with only local data or to wait for feedback from the center) Calculation load and the size of gateway | ### Gateway size comparison Minimum: lunch box size ease to install everywhere Full function with full autonomous power supply ## Dynamic vertical migration control Frequent migration causes unstable system # Frequency of Trigger of migration | Trigger | Freq. | Cause | Countermeasure | |-----------------------|--|---|---| | Backbone network | Several times a year | Backbone maintenance
DDoS attack | | | Power state of GW | - | Battery running out | Correct estimation | | Power state of sensor | Several times a month | Fluctuation of sunshine | Power scheduling (MPSoC2015,2016) | | Link quality | Several times a month
Several times a day | Weather, vegetation, moving obstacle, Optimized routing of RF device | Deployment plan
considering environment
and characteristics of RF
device | ## What happened ■ Optimal path search algorithm like AODV(Ad-hoc On-Demand Distance Vector) is affected by environmental change and reduces data collection ratio. → <u>cause of system instability</u> Link quality (ex. Stable=-80dBm~, Usable=-80~-85dBm, Bad=-85dBm) Nodes must not be deployed at physical distance that transit the "usable-bad" state # Proper deployment ## Ideal relationship of nodes Data calibration operation with neighbor nodes Reliable data transfer (ad-hoc network) #### Symmetric topology > Equivalent architecture Cluster with Equivalent transmission path throughput (Stable link quality and stable data transmission makes easy scheduling for control) LQI=Link Quality Indicator (≒ RSSI) ## Actual relationship of nodes Even though the physical distance is symmetric, it will not be symmetric in terms of wireless communication # Proposed simulation ## Example of region # Proposed simulation #### ① Specify GW and measurement position #### ③Searching for relay points (automatic) #### 2 Enter communication characteristic template #### **4** Determination ## Result ## ■ Simple deployment ## Conclusion - Advancement of automobile and road operation system is progressing. - Although, research and development of advanced control systems for automobiles is in progress, the road monitoring and control systems to be cooperated into ICT has been delayed. - There are problems between server cloud and gateway edge loads and system robustness and stability. Implementation is not simple and not easy. - We made two proposals and verified the effect. - Dynamic vertical migration control for distributed processing between gateway (edge) and cloud - Wireless node deployment simulation shaping tomorrow with you