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Architecture 2030 Workshop @ ISCA’16

8:30 Intro remarks by Luis Ceze and Tom Wenisch
8:50 Mark Hill (Wisconsin) on “21st Century Computer Architecture”
9:10 Tom Conte (GeorgiaTech) on “IEEE Rebooting Computing Initiative & International Roadmap of Devices and Systems”
9:30 Devices Keynote: Philip Wong (Stanford) on “Device Technologies for the N3XT 1,000X Improvement in Computing
' Performance”
10:30 Break
11:00 Steve Keckler (nVidia/UT Austin) on “The Influence of Academic Research on Industry R&D"

11:25 Michael Taylor (UCSD) on “Open Source HW: Architecture’s Only Hope for Survival®

11:45 Alvy Lebeck (Duke) on “Computing and Biomolecules™
12:05 Yuan Xie (UCSB) on “Technology-driven Architecture Innovation: Challenges and Opportunities”
12:30 Lunch

Applications Keynote: Kayvon Fatahalian (CMU) on “100 Quadrillion Live Pixels: The Challenge of Continuously
Interpreting, Organizing, and Generating the World's Visual Information™

14:00




The Goal of the Workshop

0 Community Efforts on the Vision for Computer Architecture
research for the next 15 years

a0 Why now? A lot has changed in the last 5 years
e Technology scaling is slowing down (Moore’s law is dying)
e Emerging technologies are getting mature.

e Deep neural networks “caught us by surprise”, machine learning now a
key workload

e Major platforms emerged (cloud, 10T, etc)
e Vertical integration (systems companies)

e Explosion of data (e.g., 1 trillion photos uploaded in 2015, genomics
growing fast)



The Outcome of the Worksho

Arch2030: A Vision of Computer
Architecture Research over the
Next 15 Years
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Technology Scaling: Key Contributor

0 Technology scaling has been the key contributor to the
performance improvement in microprocessor

Technology Nodes # Transistors per die
10,000,000,000
| um
250 rem | Bcore intel Xeon Haswell ES o
o 2 O
o180 nen Apple AXE o
1,000,000,000
100,000,000
10,000,000
1,000,000
| nem Q 3nm
1995 2000 2005 2010 2015 2020 2025

Source: IMEC
An Steegen, 2015



Technology or Architecture Innovation?

0 Technology or Architecture: \Whose contribution is more
significant for micprocessor performance improvement?

e Contribution to computer performance growth roughly equally
between technology and architecture *
*Danowitz, et al., “CPU DB: Recording Microprocessor History”, CACM 04/2012
microprocessor trends over the past 40years. SRS A SR
while the squares denote how much speedup came from improving the manufacturing

BY ANDREW DANOWITZ, KYLE KELLEY, JAMES MAO,
JOHN P. STEVENSON, AND MA RK HOROW ITZ process.

CPU DB: L0000 e PGTICHPSOTNN o 85 =FO4 of 3957
Recording BEEEEEET IR
Microprocessor ™[~ bt |
HiStOI'y 100-...‘..; ...... "" ..... ..... ------ e .

............

. * . L :
‘5.3; - S « :
. 2 . ' 0 ' .
10 _,.¢° ..... B ms oW loml o e A R L .
. . . L} ' * .
IN NOVEMEBER 1971, Intel introduced the world's first > . - - .
single-chip microprocessor, the Intel 4004. It had . f-- H = !
2,300 transistors, ran ata clock speed of up to 740KHz, i '-': ! ! '
and de livered 60,000 instructions per second while 1 = 2 . 4 2 L 4 4 . . L
dissipating 0.5 watts. The foll owing four decades 15 10 068 050 035 025 018 013 080 0065 0.045 0032

witmessed .L'\r'llr".L'I‘..U al growth in compute power, Feature Size [um]



Technology or Architecture Innovation?

0 Technology or Architecture: \WWhose contribution is more
significant for micprocessor performance improvement?

e Contribution to computer performance growth roughly equally
between technology and architecture *

*Danowitz, et al., “CPU DB: Recording Microprocessor History”, CACM 04/2012

a Technology and Architecture: Evolving Interaction
e New technologies affect decision making by architects

e Development in architecture impacts the viability of
technologies

Computer Technology
and Architecture:
An Evolving Interaction

IEEE Computer, 09/1991

John L. Hennessy, Stanford University
Norman P. Jouppi, Digital Equipment Corporation



3D Integration As a New Dimension of Scalability

Going Vertical by 2021, to be replaced by 3D ...

i : , , o 2 replaced by 3D ... 2015 when we noted the
3D integration provides a new dimension of scalability pys aren't expected until the 2021 .
v

A critical consequence of the end of Moore's Law is
that chip designers can no longer scale the number of  -by-2021-to-be...  2016-7-27

transistors in their designs “for free” every 18 months
' r - by 2021, to be replaced by 3D ...

Furthermore, over recent Silicon generations, drivin
' _ _ g _ g 2 replaced by 3D integration. ... We discussed
global wires has grown increasingly expensive relative  .g for a Moore’s law 3.0, ...

to computation. and hence interconnect accounts for an
increasing fraction of the total chip power budget.

v
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3D integration offers a new dimension of scalability in

chip design. enabling the integration of more transistors ZH (D) RERET - AFHTYRERE.
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shortening interconnects by routing in three dimensions
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Technology-Driven Architecture
a Technology and Architecture: Evolving Interaction
e New technologies affect decision making by architects

e Development in architecture impacts the viability of technologies

A Case Study on 3D Die-Stacking Architecture

DRAM
DRAM
DRAM

’ Microprocessor ’

3DIC

2002/11/11

15 Years of IBM 3D Research

Many programs existed for extended perlods before publlcatlon
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Design Space Exploratiol
3D Architectures

YUAN XIE

PROCESSOR DESIGN IN 3L
DIE-STACKING TECHNOLOGI
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Intel® 3D Pentium® 4 (ICCD 2004

Bottom

Source: B.Black (Intel)



Design and Management of 3D Chip Multiprocessors Using Network-in-Memory

Feihui L1, Chrysostomos Nicopoulos, Thomas Richardson, Yuan Xie,
Vijaykrishnan Narayanan, Mahmut Kandemir
Dept. of CSE, The Pennsylvania State University
University Park, PA 16802, USA ISCA 2006
{feli,nicopoul.trichard,yuanxie,vijay.kandemir } @cse.psu.edu
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Figure 1. A typical NoC
mesh.

Figure 4. Prbposed 3D Network-in-
Memory architecture



Intel’s 3D +NOC Prototyping (2007)
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20MB 3D local memory for TFLOP performance

BW 12GB/s/tile @ full core clock (3GHz)
~1TB/s for TFLOP

Courtesy: T. Karnik (Intel)



Intel’s Tick-Tock Model

O Proposed in 2007
O Tick: technology change (e.g. 45nm->32nm)
O Tock: architecture change (e.g. Nehalem->SandyBridge)

Manufacturing process technolony Microarchitectures

performance, new

capabilities, enargy

oty o
form factar
Intel® microarchiteciure Intel* microarchitec ture Intel® microarchiteciure advanies
code name Nehalem _f'f"'-'f-! FHTE code name Haseel|
Sandy Bridge
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2D XPU+ 3D Memory = 2.5D Integration

TSV-based 3D
integration

DRAM DRAM
DRAM DRAM DRAM |

LlRG _ me Microprocessor me
Microprocessor =
| Silicon Intergoser |

3D Stacked Silicon Stacked Silicon with
TSV-based 3D integration

0 More and more transistors can be integrated into a single package

0 About 100MB-1GB on-package DRAM would be available

0 How to use these transistors efficiently?
e Multi-core, and many-core?
e Larger cache size or deeper cache hierarchy?
e On-package main memory?

X. Dong et al. “Simple but Effective Heterogeneous Main Memory with On-Chip Memory Controller Support” (SC 2010)
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In-package 3D Memory with GPU

Conventional GDDRs, off-chip Wide-bus routing on

silicon interposer
SM|ISM SM | |

DRAM {4 S S prRAM
DRAM }1S QO DRAM
SM||SM SM
Central
Silicon Controller

3D-Stacked DRAMs Interposer .

,..L..ISMsandMCs..____I Top View

==X |

Package Substrate Side View

Optimizing GPU Enerqy Efficiency with 3D Die-stacking Graphics Memory and Reconfiqurable
Memory Interface. Jishen Zhao, Yuan Xie, Gabe Loh, ISLPED 2012.




Die-Stacking Happened!

AMD Announcement on June 16, 2015
“Fiji” Chip I_i

DETAILED LOOK

4GB High-Bandwidth Memaory
A0596-bit wide interface
512 Gb/s Memory Bandwidth

Graphics Core Next Architecture
&4 Compute Units**

4096 Stream Proceszors

2896 £q. mm. Engine

Total 1011 sq. mm

— The Fiji GPU Packaging is 50x50mm

— The interposer size is 26x32mm

— The GPU is about 20x24mm

— There are four 1GB HBM stacks for a total of 4GB of memory

27 AMD¢T
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Knignts Landing &

Holistic Approach to Real Application Breakthroughs gl

Platform Memory Compute

w Uoto 384 GB DDR4 (6 ch) ' = Intel® Xeon® Processor Binary-Compatible
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" 2D Mesh Architecture
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A + Up 1016 GB ataunch

£ & 1]0 8% 0: 36 PCle 3.0 lanes

Integrated Intel* Omni-Path

intel




Jechnology-Driven Architecture Innovation

e New technologies affect decision making by architects
e Development in architecture impacts the viability of technologies

2.5D GPU
3D->2.5D (ISLPED12)
multi-core (SC10) | DStacked DRMMS e
Technology coarse-granularity uP o S
development  (15CA06,MICRO06) i (W] |55
[ 2004 I 2007 I 2011 [ 2015
1990-2004 \ 2006 2010 2012

2.5D GPU
AMD Fury X



Scalable and Energy-Efficient Architecture Lab (SEAL)

Technology-Driven and Application-Driven
Architecture Innovations:

by

UC Santa Barbara 4 UC SANTA BARBARA
) Q Scalable Energy-efficient engineering
e = | Architecture Lab




Emerging Application-Driven Architecture

Machine Learning as a Key Workload

Machine Learning (s changing the way we imolement
b y A
applications. Hardware advancement make P 5 31 0 B AR
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The (Re)Rising of Al Applications

Data Embedded
Devices

Supercomputers Smartphones

Centers

Business
analytics

Audio
recognition

. Automatic
Drug design  translation Image
analysis Consumer

Courtesy: Yunji Chen, ICT electronics




New Opportunities for Chinese Scholars

0 Chinese researchers becomes the pioneers/leaders in
the design of novel architecture for Al application.
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2016: BEFRA A4 48 F 454 %
Cambricon: ISCA’161F % 493 % —

v

v

» 1GHz, 0.485W @
65nm, i@l fICPU
1/1089 @ 4%, 1004%
89 fig

v

v



New Opportunities for Chinese Scholars

0 Chinese researchers becomes the pioneers/leaders in
the design of novel architecture for Al application.

Aristotle: Efficient Object Recognition Platform “""‘“l""‘“"
50cm

>
L V4

wo Q'S

|H “ z :

Designed for CNN Acceleration
Supports all Conv sizes, stride size
Scalable design (1PE, 2PE, 4PE, 12PE)
Supports mainstream deep leaming object detection framework




GPU’s Important Role in Al HW Acceleartor

Building High-level Features
Using Large Scale Unsupervised Learning

Quoc V. Le QUOCLEQCS.STANFORD.EDU
Marc’Aurelio Ranzato RANZATOQGOOGLE.COM
Rajat Monga RAJATMONGAQGOOGLE.COM
Matthieu Devin MDEVIN@GOOGLE.COM
Kai Chen KAICHEN@QGOOGLE.COM
Greg S. Corrado GCORRADO@GOOGLE.COM
Jeff Dean JEFFQ@GOOGLE.COM
Andrew Y. Ng ANG@(CS.STANFORD.EDU

a 2012, training on a cluster with 1,000 machines (16,000
CPU cores) for three days.

Deep learning with COTS HPC systems

Adam Coates ACOATES@CS.STANFORD.EDU
Brody Huval BRODYH@STANFORD.EDU
Tao Wang TWANGCAT@STANFORD.EDU
David J. Wu DWU4@CS.STANFORD.EDU
Andrew Y. Ng ANG@QCS.STANFORD.EDU

Stanford University Computer Science Dept., 353 Serra Mall, Stanford, CA 94305 USA
Bryan Catanzaro BCATANZARO@NVIDIA.COM

NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050

0 2013, training on a cluster of 3 GPU servers for 2 days



AMD Roadmap
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Nvidia GPU Roadmap

Pascal

Mixed Precision
3D Memory
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AMD’s Catch to Nvidia’s on Al (2017)

Accelerators @ R A DE O N INSTINC

MI25 Vega with NCU

Passively Cooled Inference Accelerator N Eatm Facton Nccamrming Passively cooled Training Accelerator

8.2 TFLOPS
5.70 TFLOPS 2X Packed Math

: High Bandwidth Cache
224 GB/s Memory Bandwidth B2 004 iy Dhma— and Controller

<150W <175W <300W

MIOpen Performance for Machine Intelligence

Bringing accelerated deep leaming application to Radeon Instinet
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Intel/Nervana

2016/8, Intel paid $350M to acquire Nervana to enter Al HW era

Intel will test Nervana's ‘Lake Crest’ silicon in
first half of 2017, ‘Knights Crest’ also coming

JORDAN NOVET (HTTPS://VENTUREBEAT.COM/AUTHOR/JORDAN-NOVET)  @JORDANNOVET (HTTPS://TWITTER,COM/JORDANNQVET)
NOVEMBER 17,2016 1:14 PM
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FPGA vs. GPU

Can FPGAs Beat GPUs in Accelerating
Next-Generation Deep Neural Networks?

Eriko Nurvitadhi', Ganesh Venkatesh', Jaewoong Sim', Debbie Marr’,

Randy Huang®, Jason Gee Hock Ong?, Yeong Tat Liew’,
Krishnan Srivatsan®, Duncan Moss®, Suchit Subhaschandra®, Guy Boudoukh*

'Accelerator Architecture Lab, 2Programmalble Solutions Group, *FPGA Product Team, 4Compu’(er Vision Group
Intel Corporation

Microsoft has revealed that Altera FPGAs have been installed across every
Azure cloud server, creating what the company is calling “the world’s first Al
supercomputer.” The deployment spans 15 countries and represents an
aggregate performance of more than one exa-op. -2016



GPU vs. FPGA for Deep Learning

Training in a cloud-based environment

Large-scale inference workloads
available on many public clouds

- Ease-of-use,

- Well-established ecosystem,

- Abundance of standardized libraries,
frameworks, and support

- power consumption

- lack of the ability to accommodate
hardware changes as neural
networks and algorithms evolve

- Excel at inference, where requires the
most compute efficiency in terms of
performance-per-watt.

Possible training (see Intel's FPGA 17
paper)

- Reconfigurable, enabling leverage
across a wide range of workloads and
new evolving algorithms and neural
networks (Compression, pruning, and
variable / limited precision (8-bit to 1-bit
layers in the same network) techniques

- Difficulty to program



No “one chip to rule them all” solutions

O Each has its advantages for a specific type of application, or data, that is being
deployed and in a specific environment.
O The data complexity and velocity determines how much processing is needed,
O The environment determines the latency demands and the power budget.

Datacenter

FPGAs
(Intel & Xilinx)

CQualcomm Mvidia Drive PX2

Snapdragon

MNvidia
Jetson

Edge / Hybrid

P o
8

-t'l.---—--,,l‘tEF { ™, \‘-/
XEON PHI I .
sde ) Nvidia Tesla P40 & P4 - FPGAS (Xilinx & Intel)

' Datacenter

Performance & Functionality

*Preannounced & included for completeness

Hardware across the Machine Learning landscape (Source: Moor Insights & Strategy)



Today’s NN and DL Acceleration
0 Neural network (NN) and deep learning (DL)

e Provide solutions to various applications

e Acceleration requires high memory bandwidth
- Memory bandwidth becomes the bottleneck

Memory Bandwidth Requirement

w 7000 5898.24
) 6000 /
;_E 2000 Real bandwidth of Nvidia K40c:
400 288GB/s 7949,
£ 3000 / / : :
5 2000 1474.56 * The size of NN increases
& 1000 87?.—7]
: o | —T09 T o * e.g., 1.32GB synaptic
= 4x T6x weights for Youtube video
Perf . .y
=o=AlexNet lower bound Sromenee =8=AlexNet upper bound ObJeCt reCOg n |t|on
«#=\/GGNet lower bound «-VGGNet upper bound

Deng et al, “Reduced-Precision Memory Value
Approximation for Deep Learning”, HPL Report, 2015



Google TPU Disclosed Last Month in ISCA

In-Datacenter Performance Analysis of a Tensor Processing Unit™

The TPU is about 15X - 30X faster at inference than the K80 GPU and the
Haswell CPU.

.

NN apps are memory-bandwidth limited on the TPU; if the TPU were revised to have
the same memory system as the K80 GPU, it would be about 30X - 50X faster than

the GPU and CPU.

" DOR3 DRAM Chips | |
/ 30 GiBis
e ﬁ =1
G - Unified Buffer Matrix Multiply Unit
EEEIEEaizaaEaial for Local Activations (256x256x8b=64K MAC)
§ T (96Kx256x8b = 24 MiB) 24%
:g sichewnid 29% of chip
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Chi et al., “PRIME: A Novel Processing-in-memory Architecture for Neural
Network Computation in ReRAM-based Main Memory“, ISCA 2016
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Summary

Application trends, device technologies and the architecture of systems drive progress in information technologies. However,
the former engines of such progress - Moore's Law and Dennard Scaling - are rapidly reaching the point of diminishing
returns. The time has come for the computing community to boldly confront a new challenge: how to secure a foundational
future for information technology's continued progress.

The computer architecture community engaged in several visioning exercises over the years. Five years ago, we released a
white paper, 2Ist Century Computer Architecture, which influenced funding programs in both academia and industry. More
recently, the /EEE Rebooting Computing Initiative explored the future of computing systems in the architecture, device, and
circuit domains.

Parsonalized Virtual Global-scale Autonomous
medicine reality computer vision systems

Driving
applications

This report stems from an effort to continue this dialogue, reach out to the applications and devices/circuits communities, and
understand their trends and vision. We aim to identify opportunities where architecture research can bridge the gap between
the application and device domains.

Why now? A lot has changed in just five years:

1. We now have a clear specialization gap — a gap between off-the-shelf hardware trends and application needs. Some
applications, like virtual reality and autonomous systems, cannot be implemented without specialized hardware, yet
hardware design remains expensive and difficult.

2. Cloud computing, now truly ubiquitous, provides a clear “innovation abstraction;” the Cloud creates economies of scale
that make ingenious, cross-layer optimizations cost-effective, yet offers these innovations, often transparently, to even the
smallest of new ventures and startups.

3. Going vertical with 3D integration, both with die stacking and monolithic fabrication, is enabling silicon substrates to grow
vertically, significantly reducing latency, increasing bandwidth, and delivering efficiencies in energy consumption.

4. Getting closer to physics: device and circuit researchers are exploring the use of innovative materials that can provide
more efficient switching, denser arrangements, or new computing models, e.g., mixed-signal, carbon nanotubes, quantum-
mechanical phenomena, and biopolymers.

5. And finally, machine learning has emerged as a key workload; in many respects, machine learning techniques, such
as deep learning, caught system designers “by surprise” as an enabler for diverse applications, such as user preference
prediction, computer vision, or autonomous navigation.
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We now describe each opportunity in greater detail.

The Specialization Gap: Democratizing
Hardware Design

Developing hardware must become as easy,
inexpensive, and agile as developing software to
continue the virtuous history of computer industry
{nnovation.

A widespread and emerging consensus maintains that
classical CMOS technology scaling — the technical
engine underlying Moore’'s Law that enables ever smaller
transistors and denser integration — will come to an

end in at most three more semiconductor technology
generations (6-9 years)". Further, Dennard scaling — the
concomitant technical trend that enabled constant
power per chip despite increasing CMOS integration
density — ended in the mid-2000s?®, leading to a sea
change in processor design: energy efficiency per

operation has replaced area efficiency or peak switching
speed as the most important design constraint limiting
peak performance*.

The effects of the imminent demise of classical scaling
can be seen in recent industry announcements. Intel
has abandoned its long-standing “tick-tock” model

of releasing two major chip designs per technology
generation, shifting instead to three designs; this
extends the marketable lifetime of each generation as
it drags the last gasps out of Moore's Law®. Further,
the Semiconductor Industry Association has abandoned
its biennial updates of the decades-old /nternational
Technology Roadmap for Semiconductors®, a document
that had been instrumental in coordinating technology,
manufacturing, and system development across the
industry. With no clear path to continued scaling, the
value of the ITRS has ebbed.

' Chien and Karamcheti."Moore’s Law: The First Ending and a New Beginning.” Computer 46.12 (2013) 48-53.
2 Fuller and Millett, “The Future of Computing Performance: Game Over or Next Level?,” The National Academy Press, 2011

(http://books.nap.edu/openbook php?record_id=12980&page=R1).

* Horowitz et al. “Scaling, power, and the future of CMOS.” /EEE International Electron Devices Meeting, 2005.
*Mudge. “Power: A first-class architectural design constraint.”"Computer 34 .4 (2001): 52-58.

S http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law

¢ http://[www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/
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Yet, new applications continue to emerge that demand
ever more computational capability. Foremost among
these are the previously unimaginable applications
enabled by large-scale machine learning, from image and
speech recognition to self-driving cars to besting human
experts at Go. Similar explosive growth can be seen in
the need to process and understand visual data; some
envisioned applications may demand the processing of
gigapixels per second for every human on earth.

Past computing advances have been facilitated by the
enormous investments in general-purpose computing
designs enabled by classical scaling and made by only
a handful of processor vendors. The large aggregate
market of computing applications that benefited

from these general-purpose designs amortized their
substantial cost.

Given the twilight of classical scaling, continuing to
meet emerging application performance demands

by improving only a few general-purpose computing
platforms is no longer feasible. Rather, over the past
5-10 years, a new strategy has emerged in some
compute-intensive application domains: specialized
hardware design. Specialized hardware (e.g.,
application-specific integrated circuits) can improve
energy efficiency per operation by as much as 10,000
times over software running on a general-purpose chip’.
The energy efficiency gains of specialization are critical
to enable rich applications in the emerging Internet-of-
Things. Specialization has been enormously successful
in graphics rendering and video playback. Other initial
evidence of commercial success is in machine learning
applications. Indeed, the computer architecture
research community has recognized and embraced
specialization: of 175 papers in the 2016 computer
architecture conferences (ISCA, HPCA, MICRO), 38 papers
address specialization with GPUs or application-specific
accelerators, while another 17 address specialized
designs for machine learning.

However, commercial success of specialized designs,
to date, has been demonstrated only for applications

with enormous markets (e.g., video games, mobile video
playback) that can justify investments of a scale similar
to those made by general-purpose processor vendors.
In terms of both time-to-market and dollars, the cost of
designing and manufacturing specialized hardware is
prohibitive for all but the few designs that can amortize
it over such extensive markets.

To continue the virtuous innovation cycle, it is critical
to reduce the barriers to application specific system
design; to enable the energy efficiency advantages

of specialization for all applications. Our vision is to
“democratize” hardware design: that is, that hardware
design become as agile, cheap, and open as software
design. Software development teams can leverage

a rich ecosystem of existing reusable components
(often free and open source), use high-level languages
to accelerate the capability of an individual developer,
and rely on capable and automated program analysis,
synthesis, testing, and debugging aids that help ensure
high quality.

Despite decades of investment, computer-aided

design has not delivered the same level of capability
for hardware to a small development team. System
designers require better tools to facilitate higher
productivity in hardware description, more rapid
performance evaluation, agile prototyping, and rigorous
validation of hardware/software co-designed systems.
Tool chains must mature to enable easy retargeting
across multiple hardware substrates, from general
purpose programmable cores to FPGAs, programmable
accelerators, and ASICs. Better abstractions are
needed for componentized/reusable hardware, possibly
in the form of synthesizable intellectual property
blocks or perhaps even physical chips/chiplets that
can be integrated cheaply at manufacture. The
architecture research community has an opportunity
to lead in the effort to bridge the gap between general-
purpose and specialized systems and deliver the tools
and frameworks to make democratized hardware
design a reality.

"Hameed et al. “Understanding sources of inefficiency in general-purpose chips.” International Symposium on Computer Architecture, 2010.
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The Cloud as an Abstraction for
Architecture Innovation

By leveraging scale and virtualization, Cloud
computing providers can offer hardware innovations
transparently and at low cost to even the smallest of
their customers.

The disruptive nature of Cloud computing to business-
as-usual has been widely appreciated®. The Cloud

lets new ventures scale far faster than traditional
infrastructure investment. New products can grow from
hundreds to millions of users in mere days, as evidenced
by the meteoric launch of Pokemon Go in July 2016.
However, the Cloud also disrupts traditional Fortune

500 business models since businesses that previously
owned their own IT infrastructure realize the cost
benefits derivable from leasing Cloud resources.

Less widely appreciated, however, is the Cloud
computing model's ability to provide a powerful
abstraction for cross-layer architectural innovation that
was previously possible in only a very few, vertically
integrated IT sectors (e.g., specialized high-performance
supercomputers). The model provides two critical
advantages: scale and virtualization.

Cloud computing providers can leverage scale not only
for their own businesses, but for the benefit of their
customers making investments in IT. As a result, these
providers often find it cost effective to make enormous,
non-recurring engineering investments, for example, to
develop entirely new hardware and software systems in-
house rather than relying on third-party vendor offerings.

We are beginning to see the emergence of specialized
computer architectures enabling unprecedented
performance in the Cloud. GPUs are becoming
ubiquitous, not only in high-end supercomputers, but
also in commercial Cloud offerings. Microsoft has
publicly disclosed Catapult®, its effort to integrate
field-programmable gate arrays to facilitate compute

specialization in its data centers. Cavium has released
the ThunderX, a specialized architecture for Internet
service applications. Google has disclosed the Tensor
Processing Unit® a dedicated co-processor for machine
learning applications. These projects demonstrate that
the economic incentives are in place for Cloud providers
to invest in computer architecture specialization.

For academic computer architecture researchers, now
is the moment to seize this opportunity and present
compelling visions for cross-layer specialization.

For example, the ASIC Clouds effort presents a

vision for how a large number of highly specialized
processors can be deployed in concert to drastically
accelerate critical applications". The scale of the
Cloud computing landscape has created a viable

path for such academic proposals to demonstrate
real, immediate impact. Another aspect of in-house
specialization is the use of technologies that require
special facilities, for example, atomic clocks for global
time synchronization or superconducting logic that
requires extremely low temperatures and makes
sense only in a data-center environment.

The second critical advantage of the Cloud computing
model is virtualization. By virtualization, we refer

to a broad class of techniques that introduce new
hardware and software innovations transparently

to existing software systems. Virtualization lets a
Cloud provider swap out processing, storage, and
networking components for faster and cheaper
technologies without requiring coordination with their
customers. It also enables the oversubscription of
resources — transparent sharing among customers
with time-varying, fractional needs for a particular
resource. Oversubscription is essential to the cost
structure of Cloud computing: it lets Cloud providers
offer IT resources at far lower prices than those
individual customers would incur by purchasing
dedicated resources.

& http://lwww.zdnet.com/article/eight-ways-that-cloud-computing-will-change-business/
° putnam, et al. “A reconfigurable fabric for accelerating large-scale datacenter services.” ACM/IEEE 4ist International Symposium on

Computer Architecture, 2014.

10 https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
" Magaki et al. "ASIC Clouds: Specializing the Datacenter.” ACM/IEEE 43rd International Symposium on Computer Architecture, 2016.



Academic computer architecture research has long
been fundamental to enabling virtualization; indeed,
VMWare, the most recognizable vendor of virtualization
technology, was launched from a university research
project. Academic architecture researchers must
continue to play a key role in developing virtualization
techniques that close the gap between virtualized and
bare-metal performance. And, architecture researchers
must develop new virtualization abstractions to enable
transparent use and oversubscription of specialized
hardware units, like the Catapult, TPU, or ASIC clouds.

Going Vertical

3D integration provides a new dimension of scalability.

A critical consequence of the end of Moore's Law is
that chip designers can no longer scale the number of
transistors in their designs “for free” every 18 months.
Furthermore, over recent Silicon generations, driving
global wires has grown increasingly expensive relative
to computation, and hence interconnect accounts for an
increasing fraction of the total chip power budget.

3D integration offers a new dimension of scalability in
chip design, enabling the integration of more transistors
in a single system despite an end of Moore's Law,
shortening interconnects by routing in three dimensions,
and facilitating the tight integration of heterogeneous
manufacturing technologies. As a result, 3D integration
enables greater energy efficiency, higher bandwidth, and
lower latency between system components inside the
3D structure.

Architecturally, 3D integration also implies that
computing must be near data for a balanced system.
While 3D has long enabled capacity scaling in

Flash and other memory devices, we are only now
beginning to see integration of memory devices

and high performance logic, for example, in Micron's
Hybrid Memory Cube. 3D stacking has prompted

a resurgence of academic research in ‘near-data
computing” and “processing-in-memory” architectures,
because it enables dense integration of fast logic
and dense memory. Although this research topic
was quite popular 20 years ago, processing-in-
memory saw no commercial uptake in the 1990s due

to manufacturability challenges. With the advent of
practical die stacking and multi-technology vertical
integration, such architectures now present a
compelling path to scalability.

While 3D integration enables new capabilities, it

also raises complex new challenges for achieving

high reliability and yield that can be addressed with
architecture support. For example, 3D-integrated
memory calls to re-think traditional memory and storage
hierarchies. 3D integration also poses novel problems
for power and thermal management since traditional
heat sink technology may be insufficient for the power
density of high-performance integrated designs. Such
problems and challenges open a new, rich field of
architectural possibilities.

Architectures “Closer to Physics”

The end of classical scaling invites more radical
changes to the computing substrate.

New device technologies and circuit design techniques
have historically motivated new architectures.

Going forward, several possibilities have significant
architectural implications. These fall into two

broad categories. The first is better use of current
materials and devices by a more efficient encoding

of information, one closer to analog. There has been

a rebirth of interest in analog computing because of
its good match to applications amenable to accuracy
trade-offs. Further, analog information processing
offers the promise of much lower power by denser
mapping of information into signals and much more
efficient functional units than their digital counterparts.
However, such computing, more subject to noise,
requires new approaches to error tolerance for it to
make sense.

The second category of opportunities is the use of ‘new”
materials, which can cover more efficient switching,
denser arrangements, and unique computing models.
Below we list a few prominent efforts worthy of the
architecture community’s attention.

New memory devices. For decades, data has been
stored in DRAM, on Flash, or on rotating disk. However,
we are now on the cusp of commercial availability
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of new memory devices (e.g., Intel/Micron 3D XPoint
memory") that offer fundamentally different cost,
density, latency, throughput, reliability, and endurance
trade-offs than traditional memory/storage hierarchy
components.

Carbon nanotubes. Electronics based on carbon
nanotubes (CNTs) continues to make significant
progress, with recent results showing simple
microprocessors implemented entirely with CNTs*. CNTs
promise greater density and lower power and can also
be used in 3D substrates. This momentum makes CNTs a
viable area for architects’ consideration.

Quantum computing. Quantum computing uses
quantum mechanics phenomena to store and manipulate
information. Its key advantage is that the “superposition”
quantum phenomenon effectively allows representation
of 0 and 1 states simultaneously, which can be leveraged
for exponential speed-ups compared to classical
computing for select algorithms.

A sister effort of quantum computing is
superconducting logic. Systems that use
superconducting devices, such as Josephson junctions,
offer “free” communication because they consume
little energy to move a signal over a superconducting
wire'. Operations on data, on the other hand, are more
expensive than moving data. These trade-offs are the
reverse of those in silicon CMOS, where most energy is
dissipated in communication rather than operations on
the data path.

Microsoft, Google, IBM and I-ARPA have publicized
significant investments in quantum computing and
superconducting logic. We conclude that the time is ripe
for renewed academic interest in quantum computer
architectures, with a likely path to practical impact
within a decade.

Borrowing from biology. The use of biological
substrates in computing has long been considered a
possibility in several aspects of computer systems. DNA
computing has demonstrated simple logic operations
and more recent results show the potential of using
DNA as a digital medium for archival storage and for
self-assembly of nanoscale structure® Progress in
DNA manipulation® fueled by the biotech industry is
making the use of biomaterials a more viable area for
consideration among architecture researchers. Beyond
DNA, there are other biomolecules that could be used
for computing such as proteins, whose engineering
advanced significantly in the past decade.

Machine Learning as a Key Workload

Machine Learning is changing the way we implement
applications. Hardware advancement makes machine
learning over big data possible.

Machine learning (ML) has made significant progress
over the last decade in producing applications that have
long been in the realm of science fiction, from long-
sought, practical voice-based interfaces to self-driving
cars. One can claim that this progress has been largely
fueled by abundant data coupled with copious compute
power. Large-scale machine learning applications have
motivated designs that range from storage systems to
specialized hardware (GPUs, TPUs).

While the current focus is on supporting ML in the Cloud,
significant opportunities exist to support ML applications
in low-power devices, such as smartphones or ultra-
low power sensor nodes. Luckily, many ML kernels

have relatively regular structures and are amenable

to accuracy-resource trade-offs; hence, they lend
themselves to hardware specialization, reconfiguration,
and approximation techniques, opening up a significant
space for architectural innovation.

12“Superconducting Computing and the IARPA C3 Program”, http://beyondcmos.ornl.gov/documents/Session%203_talkl-Holmes.pdf

B http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html

“ https://www.technologyreview.com/s/519421/the-first-carbon-nanotube-computer/

15 http://people.ee.duke.edu/~dwyer/pubs/TVLSI_dnaguided.pdf

6 http://www.synthesis.cc/synthesis/2016/03/on_dna_and_transistors

7 http://www.sciencemag.org/news/2016/07/protein-designer-aims-revolutionize-medicines-and-materials



Machine learning practitioners spend considerable

time on computation to train their models. Anecdotal
evidence suggests that week- to month-long training
jobs are common, even when using warehouse-scale
infrastructure. While such computational investments
hopefully amortize over many invocations of the
resulting model, the slow turnaround of new models
can negatively affect the user experience. Consequently,
architecture researchers have new opportunities to
design systems that better support ML model training.
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